PET Scan in Practice for CHI

- Basics, strength and weakness -

Oliver Blankenstein
Institute for Experimental Paediatric Endocrinology
Charité-Universitätsmedizin Berlin

5th Congenital Hyperinsulinism Family Conference 2013, Milan
Topics in today's presentation

1. Basics
 – Mechanisms of PET-Imaging
 – What is special on DOPA as PET-tracer?

2. 10 years experience: - role of DOPA/PET in CHI

3. Limits and Weaknesses of DOPA-PET in CHI

“The truth is rarely pure and never simple.”

Oscar Wilde
18F-DOPA-PET in CHI

- Superior performance compared to older localisation methods (PVS, Calc.-stimulation)
 - Non-invasive, faster
 - Less radiation than PVS
 - Higher sensitivity + specificity
The Berlin way

Creation of:

- high resolution PET-scans with a spatial resolution of 2 mm
- high resolution enhanced 3-phase CT-images (64 lines)
- serial scans after 20, 30 and 40 minutes

Chronology:

- First investigation at DTZ: 19th of December 2003
- Total number of investigations: about 175 (in collaboration with Charité)

In collaboration with:

Diagnostisch Therapeutisches Zentrum am Frankfurter Tor (DTZ)
Nuklearmedizin · Strahlentherapie
PET

= **Positron-Emission-Tomography**
 – High spatial resolution (1 – 3 mm)
 – Visualization of metabolic processes
 – "true" 3D-imaging

Image of a diagram showing the process of PET imaging.
What do we expect from the DOPA-PET?

- Just Differentiation?
- Added value for the surgeon?
 - Image guided surgery, Potential reduction of surgical trauma

Localization is the key to differentiated therapy

- Focal \rightarrow surgery with possible cure
- Diffuse \rightarrow long-term therapy, limited surgical possibilities
Added value of PET-imaging?

• Tracer metabolism is the key to understand PET images
 – 18F-Glucose-PET shows where sugar is burned in the body (malignant tumors, inflammation)

 – 18F-DOPA is successful in visualization of CHI…(?)

• …but why…?

• is there a metabolic link between DOPA and Insulin?
Dopamine regulates Insulin-secretion

- Highly-specific dopamine transporter in human beta-cells (VMAT2)
- Same amount of dopamine and insulin in the secretory vesicles
- Dopamine is secreted together with insulin
- Dopamine reduces insulin-secretion of surrounding beta-cells
- Neurotransmitter-like mode of action

> DOPA-content is linked to insulin secretion…!
"Hey - I'm doing the job..."

- Without attenuation too much insulin would be released (always behind the blood sugar) resulting in hypoglycaemias
- Blunting of secretion curve by paracrine regulation.

Dopamine is the way β-cells tell their neighbourhood that they are active ("Hey - I'm doing the job...")

→ relevant effect on blood sugar (and PET images?)
Limits of DOPA-PET: Giant foci

3 patients in Berlin…
DOPA-PET is specific in focal CHI

- A diagnosis of a focal 18F-DOPA-Pet is true in 95 – 98% of surgical treated patients
- Only few false-positive PET focal diagnoses
 - Focal CHI, 3 mo.
 - Non-focal CHI, 4 mo.
Sensitivity is moderate – good

- Focal CHI has been found in up to 20% of surgically treated patients with non-focal-PET result
 - Histology available in only a small part of patients with non-focal-PET results
 - Those receiving surgical therapy were selected by individual criteria based on experience of PET examiner and paediatrician.
 - Individual differences of tracer metabolism
3D-Reconstruction in focal form
Known problems in identifying a focus

• Very small foci
• Very large foci (might be seen as diffuse)
• "Hidden behind other DOPA-accumulating structures"
 – Kidneys
 – Gallbladder
• Very low DOPA-uptake
Importance of DOPA metabolism in CHI

- Variable intensity of focus enhancement
 - Some patients show very low enhancement

If you don't see it... – doesn't mean it isn't there

6 mo. old CHI patient

Prior DOPA-PET scan: "showed nearly no uptake in the pancreas"

- Extreme weak uptake of tracer on re-examination
- Maximum sensitivity showed a **small focus** in corpus.
 - Very special DOPA-metabolism in this patient
Position and size of focal lesions?

• Size and position of focal lesions are accurate in 71 – 88% (Treglia, Pediatr. Radiol 2012)
 – Different surgical strategies in different places
 – PET pictures and situation in the operation theatre not always identical
 – No established technique of image-guided CHI surgery

Localization of the focus using intersection points between confluens and focus
Intermediate or mosaic forms of CHI?

- Objective histologic criteria missing
- No data on sensitivity or specificity available
- **All** PET-pictures are altered electronically:

Diffuse CHI?
4 wk. old boy, CHI
Intermediate or multifocal CHI?

Same patient – pictures taken with 10 min. time difference
Lasting 18F-DOPA PET Uptake after Clinical Remission of the Focal Form of Congenital Hyperinsulinism

Tohru Yorifujia Yuki Hosokawaa Rika Fujimarua Rie Kawakitab Hiraku Doic
Takako Matsumotod Hironori Nishiborie Michiya Masuef

aDepartment of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital,
Horm Res Paediatr 2011;76:286–290

Fig. 1. 18F-DOPA PET scans taken at age 8 months (left) and again at 1 year and 10 months (right). Upper panels show coronal images of abdominal PET scans and lower panels show fused axial PET/CT images. The maximal standardized uptake values for these lesions were 5.0 (left) and 6.8 (right), respectively.
Conclusion(s) 18F-DOPA-PET/CT

- Very good specificity (95 – 98%),
- Good sensitivity (67 – 96%)
 - more false-negative than false-positive results
- Specific problems of 18F-DOPA-PET/CT:
 - Tracer uptake differences
 - Imaging of tracer uptake without clinical relevance
 - "Missing" of giant foci
- Risk of over-interpretation by the examiners.
 - Age pattern, digital alteration of images

18F-DOPA-PET/CT is not perfect – but it is the best we have
Your questions... ????
Dopamine in nerve-cells

• Dopamine is a known neurotransmitter
• 80% of dopamine is inside vesicles
• Dopamine-receptors on cells to transmit signals
• Free dopamine is fast degraded
Auto-/Paracrine regulation durch Dopamin

Glukose → GLUT2 → Glukose-6-phosphat → Glucokinase → Metabolismus → ATP/ADP → K⁺/K⁺-ATPase

Glukosedehydrogenase → NADPH → Glukose-6-phosphat → Glucokinase → Metabolismus → ATP/ADP → K⁺/K⁺-ATPase

Insulin-Sekretgranula → Exozytose → Insulin = Insuline

Dopamin = Dopamine

\[\text{VMAT 2 = Dopamine transporter} \]

\[\text{Reduces insuline secretion} \]
so much left to do...