

minute and a second and a second CHARITE KRANKENHAUS

PET Scan in Practice for CHI

- Basics, strength and weakness -

Oliver Blankenstein

Institute for Experimental Paediatric Endocrinology Charité-Universitätsmedizin Berlin

Topics in today's presentation

- 1. Basics
 - Mechanisms of PET-Imaging
 - What is special on DOPA as PET-tracer?
- 2. 10 years experience: role of DOPA/PET in CHI
- 3. Limits and Weaknesses of DOPA-PET in CHI

"The truth is rarely pure and never simple."

Oscar Wilde

¹⁸F-DOPA-PET in CHI

- Started 2001 in Turku, Finnland (T. Otonkonski, 2003)
- Superior performance compared to older localisation methods (PVS, Calc.-stimulation)
 - Non-invasive, faster
 - Less radiation than PVS
 - Higher sensitivity + specifity

The Berlin way

Creation of:

- high resolution PET-scans with a spatial resolution of 2 mm
- high resolution enhanced 3-phase CT-images (64 lines)
- serial scans after 20, 30 and 40 minutes

Chronology:

- First investigation at DTZ: 19th of December 2003
- Total number of investigations: about 175 (in collaboration with Charité)

In collaboration with:

PET

= Positron-Emission-Tomography

- High spatial resolution(1 3 mm)
- Visualization of metabolic processes
- "true" 3D-imaging

What do we expect from the DOPA-PET?

Just Differentiation?

- Added value for the surgeon?
 - Image guided surgery, Potential reduction of surgical trauma

Localization is the key to differentiated therapy

- Focal → surgery with possible cure
- Diffuse → long-term therapy, limited surgical possibilities

Added value of PET-imaging?

- Tracer metabolism is the key to understand PET images
 - ¹⁸F-Glucose-PET shows where sugar is burned in the body (malignant tumors, inflammation)

- ¹⁸F-DOPA is successful in visualization of CHI...(?)
 - ...but why...?
 - is there a metabolic link between DOPA and Insulin?

Dopamine regulates Insulin-secretion

- Highly-specific dopamine transporter in human beta-cells (VMAT2)
- Same amount of dopamie and insuline in the secretory vesicles
- Dopamine is secreted together with insuline
- Dopamine reduces insuline-secretion of surrounding beta-cells
- Neurotransmitter-like mode of action

→ DOPA-content is linked to insulin secretion...!

"Hey - I'm doing the job..."

- Without attenuation too much insulin would be released (always behind the blood sugar) resulting in hypoglycaemias
- Blunting of secretion curve by paracrine regulation.

- Dopamine is the way ß-cells tell their neighbourhood that they are active ("Hey - I'm doing the job...")
- → relevant effect on blood sugar (and PET images?)

Limits of DOPA-PET: Giant foci

DOPA-PET is specific in focal CHI

- A diagnosis of a focal ¹⁸F-DOPA-Pet is true in 95 98% of surgical treated patients
- Only few false-positive PET focal diagnoses

Focal CHI, 3 mo.

Fokuszentrum

Confluens

Non-focal CHI, 4 mo.

Sensitivity is moderate – good

- Focal CHI has been found in up to 20% of surgically treated patients with non-focal-PET result
 - Histology available in only a small part of patients with non-focal-PET results
 - Those receiving surgical therapy were selected by individual criteria based on experience of PET examiner and paediatrician.
 - Individual differences of tracer metabolism

3D-Reconstruction in focal form

Known problems in identifying a focus

- Very small foci
- Very large foci (might be seen as diffuse)
- "Hidden behind other DOPA-accumulating structures"
 - Kidneys
 - Gallbladder
- Very low DOPA-uptake

Importance of DOPA metabolism in CHI

- Variable intensity of focus enhancement
 - Some patients show very low enhancement

6 mo. old CHI patient

Prior DOPA-PET scan:
"showed nearly no uptake in the pancreas"

- Extreme weak uptake of tracer on re-examination
- Maximum sensitivity showed a small focus in corpus.
- Very special DOPAmetabolism in this patient

If you don't see it... – doesn't mean it isn't there

Position and size of focal lesions?

- Size and position of focal lesions are accurate in 71 – 88% (Treglia, Pediatr. Radiol 2012)
 - Different surgical strategies in different places
 - PET pictures and situation in the operation theatre not always identical
 - No established technique of image-guided CHI surgery

Localization of the focus using intersection points between confluens and focus

Intermediate or mosaic forms of CHI?

- Objective histologic criteria missing
- No data on sensitivity or specifity available
- All PET-pictures are altered electronically:

Diffuse CHI?

4 wk. old boy, CHI

Intermediate or multifocal CHI?

Same patient – pictures taken with 10 min. time difference

PET and Clinic always correlated...?

Lasting ¹⁸F-DOPA PET Uptake after Clinical Remission of the Focal Form of Congenital Hyperinsulinism

Tohru Yorifuji^a Yuki Hosokawa^a Rika Fujimaru^a Rie Kawakita^b Hiraku Doi^c Takako Matsumoto^d Hironori Nishibori^e Michiya Masue^f

^aDepartment of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital,

Horm Res Paediatr 2011;76:286-290

Fig. 1. ¹⁸F-DOPA PET scans taken at age 8 months (left) and again at 1 year and 10 months (right). Upper panels show coronal images of abdominal PET scans and lower panels show fused axial PET/CT images. The maximal standardized uptake values for these lesions were 5.0 (left) and 6.8 (right), respectively.

Conclusion(s) ¹⁸F-DOPA-PET/CT

- Very good specifity (95 98%),
- Good sensitivity (67 96%)
 - more false-negative than false-positive results
- Specific problems of ¹⁸F-DOPA-PET/CT:
 - Tracer uptake differences
 - Imaging of tracer uptake without clinical relevance
 - "Missing" of giant foci
- Risk of over-interpretation by the examiners.
 - Age pattern, digital alteration of images

¹⁸F-DOPA-PET/CT is not perfect – but it is the best we have

Dopamine in nerve-cells

- Dopamine is a known neurotransmitter
- 80% of dopamine is inside vesicles
- Dopamine-receptors on cells to transmit signals
- Free dopamine is fast degraded

so much left to do...

