Use of Lanreotide (long acting Somatostatin analogue) in Congenital Hyperinsulinism (CHI)

Dr Pratik Shah
Clinical Research fellow in Hyperinsulinism

Clinical Molecular Genetics Unit
Institute of Child Health
University College London
Overview

• Introduction – CHI and Lanreotide

• Aim

• Methodology

• Preliminary results

• Summary
Introduction

• Congenital hyperinsulinism (CHI) - commonest cause of recurrent & persistent hypoglycaemia in infants & children

• Inappropriate secretion of insulin from the pancreatic β-cells in relation to the blood glucose concentration

• Clinical presentation - symptomatic hypoglycaemia soon after birth & require large amounts of intravenous dextrose infusions to maintain normoglycaemia
Complications

- Increased risk of brain injury due to lack of both glucose & ketones.

Treatment

- Intravenous therapy/dietary therapy
- Pharmacotherapy – Diazoxide; Glucagon and Octreotide; calcium channel blockers (eg, nifedipine).
 New medications like **Lanreotide** (long acting Octreotide - Somatostatin analogue)
- Surgery – near total pancreatectomy – if not responsive to pharmacotherapy.
Diffuse disease
Histological and/or physiological abnormalities in \(\beta\)-cells throughout the pancreas

Focal disease
A focal lesion (adenomatous islet-cell hyperplasia, focal nodular adenomatosis), rest of the pancreas normal

Genetics of CHI - ABCC8, KCNJ11, GLUD1, GCK, SCHAD, HNF4A, SLC16A1, UCP2, HNF1A
Islet of Langerhans

Schematic representation of the anatomic relationships in an islet of Langerhans. The insulin-producing B cells (in blue) are in the center closest to the blood supply and are surrounded by the glucagon-producing alpha (α) cells (in orange). On the outside are the delta (δ) cells (in yellow), which make somatostatin, and the PP cells (in green), which make pancreatic polypeptide.
Lanreotide

- Octreotide - long-acting analog of somatostatin, which has inhibitory effects on the release of insulin from pancreatic β-cells.
- Lanreotide is an octapeptide analogue of natural somatostatin.
- Like somatostatin, lanreotide is an inhibitor of various endocrine, neuroendocrine, exocrine and paracrine functions.
- Lanreotide has high binding affinity for human somatostatin receptors (SSTR) 2 and 5, and a reduced binding affinity for human SSTR 1, 3 and 4.

Used in:
- acromegaly
- treatment of symptoms associated with neuroendocrine (particularly carcinoid) tumours.
Lanreotide use in CHI

 2 children (4 and 4.5 years) treated with a once-monthly injection of a long-acting somatostatin analogue.

 Use of the very-long-acting somatostatin analogue lanreotide autogel in 6 patients with CHI – reduced overall risk for hypoglycemic episodes (odds ratio 0.38) significantly.

 10 paediatric patients with HI unresponsive to diazoxide and treated with s.c. octreotide were included.
Adverse effects

- Rarely allergic type reactions / local reactions at the site of injection
- Gastrointestinal side effects include anorexia, nausea, abdominal pain, bloating, flatulence, loose stools.
- Suppression of growth and thyroid hormones
- Decrease gallbladder contractility and bile secretion leading to cholestasis, hepatic dysfunction and gall stones.
- Blood flow to the splanchnic circulation is decreased by octreotide – hence to be used cautiously in babies at risk of necrotising enterocolitis.
- Rare adverse effects - include bradycardia, malabsorption of vitamins A, B12 and D, and alopecia.
Aim/Objectives

• To understand the pharmacodynamics of lanreotide given every 28 days in children with CHI - change of 4 times a day octreotide injections to once 4 weekly lanreotide injection

• To understand somatostatin receptor expression in islets
Materials and Methods

- Ethical approval obtained from NRES (National Research Ethics Services) committee and GOSH R&D department

- Parent and children (5-10 years and > 11 years) information sheet and their consent form.

- Children >3.5 years of age – on daily octreotide injections or on diazoxide with side effects.
Methods – For lanreotide therapy (used in children >3.5 years)

- Continuous blood glucose monitoring (CGMS), baseline bloods, USS gall bladder before starting lanreotide therapy

5 day admission
- Lanreotide injection – ametop or emla cream applied

- Pain score chart
- Monitor vitals
- Blood glucose monitoring
Methods – For lanreotide therapy (used in children >3.5 years)

• Blood samples of lanreotide

• Height and weight on admission and then every 6 months

• Plan given to wean octreotide/diazoxide

2nd admission (for 1 night) – 4 weeks after the 1st injection

• Wean and stop octreotide/diazoxide night before 2nd dose of lanreotide.

• Blood glucose monitoring
Methods – For lanreotide therapy (used in children >3.5 years)

Follow up:

- Routine laboratory tests and ultrasound liver and gall bladder every 6 months

- Quality of life (QoL) survey – during 1st injection and at 6 months

- CGMS at the end of 1 year of treatment

- Those on bolus/continuous feeds overnight - to gradually reduce feeds and stop after 3 doses of lanreotide injection.
RESULTS
Case – 6.5 years

- Diagnosis: CHI (negative genetics)

- Treatment: Octreotide 22mcg/kg/day 4 times a day

- Feeds: 3 bolus feeds during daytime and continuous feeds overnight (fast tolerance max 4 hours)

- Started on Lanreotide – stopped Octreotide before the 2nd dose of Lanreotide

- After 6 months of therapy – have come off continuous feeds and bolus feeds – fast tolerance 14 hours
Summary

Preliminary data has shown that
- Lanreotide has been found effective in treatment of children with congenital hyperinsulinism – improved QoL
- So far 13 children has been started on Lanreotide

Adverse effect so far:
- One child had loose stools initial few months – then settled.
Future Plan

- Continue to recruit patients for lanreotide
- Follow up
- Immunohistochemistry – receptor expression in islets
Acknowledgements

• Dr Khalid Hussain
• Dr Rakesh Amin
• HI CNS team – Clare Gilbert, Kate Morgan, Louise Hinchey
• Dietician – Rebecca Margetts
• Psychologist – Hannah Levy, Jemima Bullock
• My colleagues – Senthil, Ved, Sofia, Azizun & Maha
Thank You