

XMetD

XOMA Overview

XOMA background

- Established 1981
- Headquarters: Berkeley, CA
- Publicly traded
 - NASDAQ: XOMA
- 170 employees

XOMA's Vision

To be a leading bio-pharmaceutical company by

- discovering unique therapeutic antibodies using our world class expertise
- developing innovative products which improve patients' lives
- commercializing to specialty markets

Achieving this vision will provide significant returns for our stakeholders and rewarding opportunities for our employees

XOMA's Business Strategy

- 1. Advance gevokizumab in collaboration with Servier
 - XOMA retains all rights in U.S. and Japan for all indications except cardiovascular and diabetes with option rights to these
 - Phase 3 NIU program initiated Q2 2012
 - Multiple Phase 2 POC program to identify next Phase 3 program, expected to be developed jointly
- 2. Commercialize gevokizumab and future products in the U.S. to Specialty markets and for orphan indications to capture greater value
- 3. Invest in differentiating discovery & development capabilities for pipeline and partnering

Current Pipeline

XOMA's Ab Platform Includes Multiple Technologies that are ADAPTed to Specific Antibody Design Goals

 XOMA mAb discovery program capable of rapid interrogation of receptors and discovery of novel allosteric binder

XOMA mAb Discovery: XMet Program

- The XMet program uncovered three apparently novel classes of insulin receptor allosteric binders
 - Activators of the INSR (e.g. XMetA)
 - Enhancers of the insulin-receptor complex (e.g. XMetS)
 - Deactivators of the INSR (e.g. XMetD)
- XMetA and XMetS programs are in research
 - XOMA intends to seek collaboration partners for global development for XMetA and XMetS
- Within XMetD class molecules, a lead has been identified for development by XOMA to treat CHI and potentially other hyperinsulinemic hypoglycemic conditions

XMetD Rationale

XMetD mechanics

 Allosteric antagonist that inhibits insulin dependent activation of the INSR

XMetD In Vitro Profile

XMetD In Vitro Profile

Antagonism

- Inhibits binding of insulin to the INSR
- Inhibition of INSR auto-phosphorylation
- Inhibition of INSR signaling via Akt

Specificity

Does not affect IGF-1R mediated Akt signaling

Assay to analyze inhibition of binding of insulin to the INSR

- Cells expressing hINSR preincubated with XMetD or control IgG
- Cells were then challenged with increasing concentrations of insulin
- Biotinylated insulin binding to INSR measured by FACS

 XMetD appears to inhibits the binding of insulin to the INSR by ~3x

Assay to analyze attenuation of INSR autophosphorylation

- Cells expressing hINSR preincubated with XMetD or control IgG
- Cells were then challenged with increasing concentrations of insulin
- INSR autophosphorylation was determined by ELISA

 XMetD appears to attenuate autophosphorylation of the INSR in the presence of insulin by ~40x

Assay to analyze attenuation of INSR signaling via Akt

- Cells expressing hINSR preincubated with XMetD or control IgG
- Cells were then challenged with increasing concentrations of insulin
- Phosphorylation of Akt determined by electrochemiluminescence

 Akt signaling via INSR appears to be effectively attenuated in the presence of XMetD by ~100x

Assay to demonstrate lack of antagonism of IGF-1R via Akt

- Cells expressing hINSR preincubated with XMetD or control IgG
- Cells were then challenged with increasing concentrations of IGF-1
- Phosphorylation of Akt determined by electrochemiluminescence

- XMetD is selective for the INSR and does not appear to affect Akt signaling via the IGF-1R
- Theoretically should permit normal IGF-1 response

XMetD In Vitro Summary

- XMetD antagonism can be measured via insulin binding inhibition, INSR autophosporylation, and Akt signaling
- Antagonist activity of XMetD is selective for the INSR

XMetD Pharmacology

Pharmacology models and studies

- Objective for pharmacology models to use XMetD to restore FBG in hypoglycemic animal models
- XMetD was tested in rodent models of hyperinsulinemiainduced hypoglycemia:
 - Rat model of hyperinsulinemic hypoglycemia
 - Mouse model of hyperinsulinemic hypoglycemia
 - Sur1 -/- mouse model (Deleon @ CHoP)
- Primary PD endpoints for efficacy evaluation
 - Fasting and fed glucose levels
 - Fasting and fed insulin levels

Single dose, <u>rat</u> hyperinsulinemic model to demonstrate efficacy on FBG

- XMetD has a dose dependent effect on hypoglycemia in a single dose study
- At higher doses, duration extends through Day 28

Single dose, mouse hyperinsulinemic model to demonstrate efficacy on FBG

XMetD restores FBG in mice with elevated insulin levels

Demonstration of prolonged FBG control with a repeat dosing in a rat hyperinsulinemic model

WinNonLin Simulation of biwk x 7

- Data from Study 1 along with PK and TK data generated from prior studies were used to generate a dosing model for producing a euglycemic state
- Data derived from the model was used to design a multi-dose study
- Repeat study dosing study was done in the rat hyperinsulinemic model

Demonstration of prolonged FBG control with a repeat dosing in a rat hyperinsulinemic model (contd.)

- Preliminary data from Day 24
- Model accurate at predicting pharmacological dose response

Demonstration of efficacy in K_{ATP} CHI with Sur1 -/- mouse model

Background information on K_{ATP} CHI

- K_{ATP} hyperinsulinism is a rare but devastating disease characterized by defects in the islet K_{ATP} channel
 - The Sur1 -/- mouse model simulates one the most severe forms of this disease
- Developed and run by Diva Deleon at CHoP
 - XMetD experiments are run in collaboration with XOMA

Demonstration of efficacy in K_{ATP} CHI with Sur1 -/- mouse model (contd.)

Sur1 -/- mouse model description

 The Sur1 -/- model is characterized by lower FBG in relation to WT

 The ratio of circulating insulin to FBG is significantly higher in the Sur1 -/- mouse

Demonstration of efficacy in K_{ATP} CHI with Sur1 -/- mouse model (contd.)

Efficacy and duration of 4 doses at 30mgs/Kg over a 28 days study

Pharmacology Summary

 XOMA247 demonstrates the ability to normalize fasting glucose levels in both a hyperinsulinemic hypoglycemia and a CHI model of hypoglycemia in rodent models

XMetD Clinical Plans

Ph1: Study Design

Phase 1

- Design
 - Adult patients with CHI
 - Ascending single doses
- Objectives
 - Safety
 - Pharmacokinetics
 - PK/PD relationship regarding hypoglycemia after a prolonged fast
 - Duration of activity
 - Optimal dose and dosing schedule

