Current Treatment Options and New Treatment Investigations

Diva D. De León-Crutchlow
Director, Congenital Hyperinsulinism Center
Stephanie Givler
Research Coordinator, Congenital Hyperinsulinism Center
Goals of Therapy

- **Immediate:**
 - To promptly restore blood glucose to normal range (> 70 mg/dL)

- **Mid-term:**
 - To identify optimal treatment regimens according to type of hyperinsulinism
 - To maintain normal blood glucose levels while encouraging normal feeding/diet
 - Anticipation and prevention are key elements of intervention and management

- **Long-term:**
 - To prevent neurologic damage
 - To promote normal life and development
Treatment of Hypoglycemia: why is it important?

- Inadequate cerebral glucose supply during neonatal period leads to serious long-term neurological impairments:
 - Repeated low glucose in infants is associated with delayed neurological complications [Lucas, BMJ 1988]
 - Range of complications learning disabilities to cerebral palsy and persistent or recurrent seizure disorders, as well as intellectual disabilities of varying degrees
Current Medical Therapies

Diazoxide: *mainstay therapy for HI*

- **How does it work:**
 - Activates the potassium channel via the SUR subunit
 - Not effective in most potassium channel mutations

- **What types of hyperinsulinism can be treated with it:**
 - Hyperinsulinism/hyperammonemia - GDH-HI
 - HNFs hyperinsulinism
 - Glucokinase hyperinsulinism (some cases)
 - SCHAD hyperinsulinism
 - Some dominant K_{ATP} channel mutations
Current Medical Therapies

Diazoxide:

- **Dose:**
 - 5-15 mg/kg/day by mouth
 - Only suspension available in US - capsules

- **Side effects:**
 - Fluid retention (worse in neonates) – use of diuretics
 - Excessive body hair
 - Suppression of appetite
 - Suppression of blood count (less common)
Current Medical Therapies

Octreotide: *second line therapy for HI*

- **How does it work:**
 - Activates potassium channel, affects intracellular translocation of Ca, direct inhibition of insulin secretion
 - Response is good for a couple of days and then wears off

- **What types of hyperinsulinism can be treated with it:**
 - Diazoxide-unresponsive hyperinsulinism
Current Medical Therapies

Octreotide:

- **Dose:**
 - 5-20 mcg/kg/day by subcutaneous injection 2-4 times daily or as continuous intravenous or subcutaneous infusion (pump)

- **Side effects:**
 - Suppression of growth hormone, thyroid hormone or/and cortisol
 - GI side effects: nausea, anorexia, abdominal pain, loose stools, diarrhea
 - Gall stones
 - Necrotizing enterocolitis (1% in a series of 103 children with HI)
Current Medical Therapies

Glucagon:

- **How does it work:**
 - Increases glucose release from the liver

- **Dose:**
 - 1 mg/day continuous intravenous infusion or through subcutaneous pump
 - 1 mg intramuscularly for emergencies

- **Side effects/problems:**
 - Nausea/vomiting
 - Available preparation crystallizes in pump tubing
Enteral Dextrose:

- **How does it work:**
 - Provides continuous supply of glucose

- **Dose:**
 - Dextrose 10-20% up to 10 mg/kg/min continuously through gastrostomy tube

- **Side effects**
 - Vomiting/reflux
 - Suppression of appetite
Diet in the Management of Hyperinsulinism

Diet:

- Frequent high-carbohydrate feedings: formula supplemented with glucose polymer
- Continuous feedings through nasogastric or gastric tube
- Cornstarch: slow-release carbohydrate
- Avoidance of protein-rich meals

Side effects:

- Reflux
- Feeding aversion
Treatment Paradigm

Diagnosis of Hyperinsulinism

Diazoxide Trial: 15 mg/kg/day for 5 days

Mutation Analysis

Diazoxide Responsive

- Blood glucose monitoring at home
- Safety fast once a year

Diazoxide Unresponsive

Octreotide +/- Continuous Enteral Dextrose

18FDOPA PET

Surgery

Cured

Fasting Test

Not Cured
New Therapeutic Options

Long acting Somatostatin Analogs:

- **Octreotide LAR**: long half-life given IM every 4 weeks

 - 10 children (age 1.3-8.5 years) transitioned from 3 SQ injections a day (or continuous) to 1 IM injection every 4 weeks for 6 months (Eur J Ped Endocrinol, 2012)

 - Well tolerated

 - Parent’s questionnaires of general satisfaction were highly positive while children’s QoL evaluation remained unchanged

<table>
<thead>
<tr>
<th></th>
<th>Octreotide</th>
<th>Octreotide + Octreotide LAR</th>
<th>Octreotide LAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose < 54 mg/dL</td>
<td>0</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Total measurements of glucose</td>
<td>56</td>
<td>314</td>
<td>812</td>
</tr>
</tbody>
</table>
New Therapeutic Options

Long acting Somatostatin Analogs:

- **Lanreotide (Somatuline Autogel):** long half-life given by deep SQ injection every 4 weeks
 - 2 children age 4 yrs transitioned from short-acting octreotide to once monthly Lanreotide (J Clin Endocrinol Metab, 2011)
 - GOSH series: 8 children (age 3.5-16 yrs) transitioned from octreotide (6) and diazoxide (2) to Lanreotide every 28 days
 - Germany series: 6 children (7 months-4 yrs) mean duration 40.8 months in 3/6 lanreotide raised mean BG and reduced episodes of hypoglycemia
Sirolimus

- mTOR inhibitor
- Constitutive activation of mTOR pathway in hyperinsulinism
- 4 children with diazoxide-unresponsive hyperinsulinism treated with sirolimus
 - 1 with typical diffuse K_{ATP}HI weaned off fluids but required octreotide
 - 3 weaned off all other therapies
- Mechanism unknown
 - \downarrow ß-cell replication vs. \downarrow insulin signaling
- Non-controlled study
- Safety profile in young children unknown: immunosuppression, effect on growth?

Exendin-(9-39)

- Specific antagonist of the GLP-1 receptor
- Impairs glucose tolerance in humans and a variety of animal models \(^{\text{Goke JBC, 1993; Thorens Diabetes, 1993}}\)
- N-terminus truncation of exendin-4 - - Exenatide (Byetta®) approved for type 2DM
- Inhibits insulin secretion and corrects fasting hypoglycemia in mouse model of \(K_{\text{ATP}}\) hyperinsulinism \(^{\text{De León, et al. J Biol Chem, 2008}}\)
Mouse model, subcutaneous infusion exendin-(9-39) for 2 weeks
Suppresses insulin secretion
Corrects fasting hypoglycemia
Exendin-(9-39) inhibits insulin Secretion in K_{ATP} HI Islets

Calabria, Li, Gallagher, Stanley, De León. *Diabetes*, 2012
Pilot Proof-of-Concept

- Pilot study to examine the effect of exendin-(9-39) on fasting blood glucose of subjects with K_{ATP} Hyperinsulinism

Methods:

- 9 subjects
- Randomized, open-label, two-period complete crossover
- Fasted subjects received an intravenous infusion of exendin-(9-39) (100, 300 and 500 pmol/kg/min) or vehicle for 6 hours in 2 consecutive days (in random order)
- Primary outcome: Blood glucose levels

www.Clinicaltrials.gov: NCT00571324
Subject Characteristics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Gender</th>
<th>Mutation (ABCC8)</th>
<th>Pancreatectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>F</td>
<td>delF1388 + 3992-9 G>A</td>
<td>85%</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>M</td>
<td>delS1387*</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>M</td>
<td>S408P*</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>F</td>
<td>3992-9 G>A</td>
<td>95%</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>F</td>
<td>3992-9 G>A</td>
<td>95%</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>M</td>
<td>delS1387*</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>F</td>
<td>delS1387*</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>47</td>
<td>F</td>
<td>R1353H*</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>37</td>
<td>F</td>
<td>R521Q*</td>
<td>None</td>
</tr>
</tbody>
</table>

*Dominant
Exendin-(9-39) elevates fasting blood glucose

Calabria and De León. Diabetes, 2012
Exendin-(9-39) suppresses plasma insulin

Calabria and De León. *Diabetes*, 2012
Summary/Conclusions

- Medical treatment easy if the hyperinsulinism is diazoxide responsive, more challenging if not responsive

- Treatment decisions should be individualized and well informed
 - Genetics
 - 18-FDOPA PET scan
 - Severity of hyperinsulinism

- Great promise for new therapies in the near future
Acknowledgements

Collaborators

Charles A. Stanley
Chang Li
Doris A. Stoffers
Franz Matschinsky
Jeffrey Barrett
Chee Ng
Steven Seeholzer

CHOP HI Center

Amanda Lee
Teresa Dansbury
Enyo Dzata
Linda Boyajian
Susan Becker
Scott Adzick
Eduardo Ruchelli
Tricia Bhatti
Lisa States
Andrew Palladino

CHOP CTRC

De León’s Lab

Puja Patel
Katherine Lord
Stephanie Givler
Simmone Henderson
Lawrenshey Charles

HI Families

Funding

NIDDK
NORD
The Goldsmith Foundation
Foerderer Award
The Lester and Liesel Baker Foundation
CTCR UL1RR024134