

Current Treatment Options and New Treatment Investigations

Diva D. De León-Crutchlow

Director, Congenital Hyperinsulinism Center

Goals of Therapy

Immediate:

To promptly restore blood glucose to normal range (> 70 mg/dL)

Mid-term:

- To identify optimal treatment regimens according to type of hyperinsulinism
- To maintain normal blood glucose levels while encouraging normal feeding/diet
- Anticipation and prevention are key elements of intervention and management

Long-term:

- To prevent neurologic damage
- To promote normal life and development

Treatment of Hypoglycemia: why is it important?

- Inadequate cerebral glucose supply during neonatal period leads to serious long-term neurological impairments:
 - Repeated low glucose in infants is associated with delayed neurological complications ^{Lucas, BMJ 1988}
 - Range of complications learning disabilities to cerebral palsy and persistent or recurrent seizure disorders, as well as intellectual disabilities of varying degrees

Diazoxide: mainstay therapy for HI

- How does it work:
 - Activates the potassium channel via the SUR subunit
 - Not effective in most potassium channel mutations
- What types of hyperinsulinism can be treated with it:
 - Hyperinsulinism/hyperammonemia GDH-HI
 - HNFs hyperinsulinism
 - Glucokinase hyperinsulinism (some cases)
 - SCHAD hyperinsulinism
 - Some dominant K_{ATP} channel mutations

Diazoxide:

Dose:

- 5-15 mg/kg/day by mouth
- Only suspension available in US capsules

Side effects:

- Fluid retention (worse in neonates) use of diuretics
- Excessive body hair
- Suppression of appetite
- Suppression of blood count (less common)

Octreotide: second line therapy for HI

- How does it work:
 - Activates potassium channel, affects intracellular translocation of Ca, direct inhibition of insulin secretion
 - Response is good for a couple of days and then wears off
- What types of hyperinsulinism can be treated with it:
 - Diazoxide-unresponsive hyperinsulinism

Octreotide:

Dose:

 5-20 mcg/kg/day by subcutaneous injection 2-4 times daily or as continuous intravenous or subcutaneous infusion (pump)

Side effects:

- Suppression of growth hormone, thyroid hormone or/and cortisol
- GI side effects: nausea, anorexia, abdominal pain, loose stools, diarrhea
- Gall stones
- Necrotizing enterocolitis (1% in a series of 103 children with HI)

Glucagon:

- How does it work:
 - Increases glucose release from the liver
- Dose:
 - 1 mg/day continuous intravenous infusion or through subcutaneous pump
 - 1 mg intramuscularly for emergencies
- Side effects/problems:
 - Nausea/vomiting
 - Available preparation crystallizes in pump tubing

Enteral Dextrose:

- How does it work:
 - Provides continuous supply of glucose
- Dose:
 - Dextrose 10-20% up to 10 mg/kg/min continuously through gastrostomy tube
- Side effects
 - Vomiting/reflux
 - Suppression of appetite

Diet in the Management of Hyperinsulinism

▶ Diet:

- Frequent high-carbohydrate feedings: formula supplemented with glucose polymer
- Continuous feedings through nasogastric or gastric tube
- Cornstarch: slow-release carbohydrate
- Avoidance of protein-rich meals

Side effects:

- Reflux
- Feeding aversion

Treatment Paradigm

New Therapeutic Options

Long acting Somatostatin Analogs:

- Octreotide LAR: long half-life given IM every 4 weeks
 - 10 children (age 1.3-8.5 years) transitioned from 3 SQ injections a day (or continuous) to 1 IM injection every 4 weeks for 6 months (Eur J Ped Endocrinol, 2012)
 - Well tolerated
 - Parent's questionnaires of general satisfaction were highly positive while children's QoL evaluation remained unchanged

	Octreotide	Octreotide + Octreotide LAR	Octreotide LAR
Blood glucose < 54 mg/dL	0	11	22
Total measurements of glucose	56	314	812

New Therapeutic Options

Long acting Somatostatin Analogs:

- ➤ Lanreotide (Somatuline Autogel): long half-life given by deep SQ injection every 4 weeks
 - 2 children age 4 yrs transitioned from short-acting octreotide to once monthly Lanreotide (J Clin Endocrinol Metab, 2011)
 - GOSH series: 8 children (age 3.5-16 yrs) transitioned from octreotide (6) and diazoxide (2) to Lanreotide every 28 days
 - Germany series: 6 children (7 months-4 yrs) mean duration 40.8 months in 3/6 lanreotide raised mean BG and reduced episodes of hypoglycemia

Sirolimus

- mTOR inhibitor
- Constitutive activation of mTOR pathway in hyperinsulinism
- 4 children with diazoxide-unresponsive hyperinsulinism treated with sirolimus
 - 1 with typical diffuse K_{ATP}HI weaned off fluids but required octreotide
 - 3 weaned off all other therapies
- Mechanism unknown
 - ♣ ß-cell replication vs. ♣ insulin signaling
- Non-controlled study
- Safety profile in young children unknown: immunosuppression, effect on growth?

Exendin-(9-39)

- Specific antagonist of the GLP-1 receptor
- ► Impairs glucose tolerance in humans and a variety of animal models^{Goke JBC, 1993}; Thorens Diabetes, 1993
- N-terminus truncation of exendin-4 Exenatide (Byetta®) approved for type
 2DM
- Inhibits insulin secretion and corrects fasting hypoglycemia in mouse model of K_{ATP} hyperinsulinism

De León, et al. J Biol Chem, 2008

Mouse model, subcutaneous infusion exendin-(9-39) for 2 weeks

Suppresses insulin secretion Corrects fasting hypoglycemia

Exendin-(9-39) inhibits insulin Secretion in K_{ATP}HI Islets

Pilot Proof-of-Concept

- Pilot study to examine the effect of exendin-(9-39) on fasting blood glucose of subjects with K_{ATP} Hyperinsulinism
- Methods:
 - 9 subjects
 - Randomized, open-label, two-period complete crossover
 - Fasted subjects received an intravenous infusion of exendin-(9-39) (100, 300 and 500 pmol/kg/min) or vehicle for 6 hours in 2 consecutive days (in random order)
 - Primary outcome: Blood glucose levels

www.Clinicaltrials.gov: NCT00571324

Subject Characteristics

Subject	Age	Gender	Mutation (ABCC8)	Pancreatectomy
1	29	F	delF1388 + 3992-9 G>A	85%
2	44	M	delS1387*	None
3	35	M	S408P*	None
4	17	F	3992-9 G>A	95 %
5	15	F	3992-9 G>A	95%
6	18	M	delS1387*	None
7	16	F	delS1387*	None
8	47	F	R1353H*	None
9	37	F	R521Q*	None

Exendin-(9-39) elevates fasting blood glucose

Calabria and De León. Diabetes, 2012

Exendin-(9-39) suppresses plasma insulin

Calabria and De León. Diabetes, 2012

Summary/Conclusions

- Medical treatment easy if the hyperinsulinism is diazoxide responsive, more challenging if not responsive
- Treatment decisions should be individualized and well informed
 - Genetics
 - 18-FDOPA PET scan
 - Severity of hyperinsulinism
- Great promise for new therapies in the near future

Acknowledgements

Collaborators

Charles A. Stanley

Chang Li

Doris A. Stoffers

Franz Matschinsky

Jeffrey Barrett

Chee Ng

Steven Seeholzer

CHOP HI Center

Amanda Lee

Teresa Dansbury

Enyo Dzata

Linda Boyajian

Susan Becker

Scott Adzick

Eduardo Ruchelli

Tricia Bhatti

Lisa States

Andrew Palladino

CHOP CTRC

De León's Lab

Puja Patel

Katherine Lord

Stephanie Givler

Simmone Henderson

Lawrenshey Charles

HI Families

Funding

NIDDK

NORD

The Goldsmith Foundation

Foerderer Award

The Lester and Liesel Baker

Foundation

CTCR UL1RR024134