Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience

Alejandro Vargas Pieck
Miquel Gussinyer Canadell
María Clemente León
Diego Yeste Fernández
Antonio Carrascosa Lezcano

Universidad Autónoma de Barcelona
Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience

• The first approach to a neonate with hyperinsulinism is critical and challenging, it must be aimed towards the avoidance of neurological sequelae as much as possible.

• Heterogeneous condition

• Congenital Hyperinsulinism is the most severe cause of hypoglycemia
58 Patients with Persistent CHI

Diagnosis

- Neonatal period and first year of life: n=53
 - Surgical Treatment: n=13
 - 2 focal
 - 11 diffuse
 - Non-Surgical Treatment: n=40
 - Stabilization: n=43
- After the first year of life: n=5
 - Surgical Treatment: n=3
 - 1 focal
 - 1 diffuse
 - Non-Surgical Treatment: n=2
TREATMENT OBJECTIVES

• Maintaining a glycemia $>60\text{mg/dL}$ as much as possible

• If Hypoglycemia develops, detecting and treating it as soon as possible.

• Avoid neurological damage.
Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience

- GENERAL SUPPORT
 • Specialized Neonatal Unit
 - Catheter care
 - Treatment of comorbidities
 - Continuous glucose monitoring

SPECIFIC TREATMENT

• Carbohydrate supply
• Pharmacological treatment
• Surgery
Medical Treatment

Glucose 15-25 mg/Kg/min

If Failure Add: Diazoxide 10-20 mg/Kg/day

Surgical Treatment

18F-DOPA-PET/CT

Failure

Diffuse

Focal

Stabilization

Subtotal Pancreatectomy

Partial Pancreatectomy

Failure

Medical Treatment

18F-DOPA-PET/CT

Failure

Cure

Total or Near-total Pancreatectomy and Diabetes

Somatostatin
Carbohydrates, First Line of Treatment

- Carbohydrate supply can go up to 25 mg/kg/min. It will rarely be below 15 mg/kg/min.
Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience

• Intravenous at the beginning, but enteral as soon as possible.

• Low osmolarity soy based formula (135mOsm/L) allows to give up to 20% maltodextrin.

• Continuous enteral infusion which very slowly is divided into several feedings a day.
Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience

• Continuous enteral infusion may be needed up to three months after birth.

• Continuous nighttime enteral feeding may be necessary for up to 6 years of age.
INFANT WITH HYPERINSULINISM UNDER CONTINUOUS ENTERAL FEEDING

Glucose Sensor Profile
Modal Day

Time

12:00 a.m. 4:00 a.m. 8:00 a.m. 12:00 p.m. 4:00 p.m. 8:00 p.m. 12:00 a.m.

Glucemia mg/dl
INSUFFICIENT CONTINUOUS ENTERAL FEEDING

Glucose Sensor Profile
Modal Day

Time
12:00 a.m. 4:00 a.m. 8:00 a.m. 12:00 p.m. 4:00 p.m. 8:00 p.m. 12:00 a.m.

Glucose Concentration (mg/dL)
30-May-02
31-May-02
1-Jun-02
2-Jun-02
3-Jun-02
Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience

Pharmacological treatment

Diazoxide

Dose: 5 – 15 mg/kg/day

If higher doses are needed → non-responder
Diazoxide

• Usually ineffective for the most severe, neonatal onset forms (recessive diffuse and the focal forms affecting The KATP channel)

• Dominant KATP channel CHI quite often responds to diazoxide though some unresponsive cases have been published.
Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience

Diazoxide

- ADVERSE EVENTS:
 - Hypertrichosis: Completely reversible when the drug is stopped.
Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience

Diazoxide

• ADVERSE EFFECTS
 - Water and sodium retention: Poses risk of congestive heart failure or reopening of the ductus arteriosus. It is advised to coadministrate diuretics, usually thiazides.
 - Others: Hyperuricemia and Neutropenia. (Very rare)
Same Patient Receiving 7.5 mg/Kg/day

![Graph showing glucose concentration over time for a patient receiving 7.5 mg/Kg/day of a medication. The x-axis represents time in 12-hour increments from 12:00 AM to 12:00 AM, and the y-axis represents glucose concentration in mg/dL. The graph shows fluctuations in glucose concentration throughout the day.](image-url)
Pharmacological treatment

Somatostatin and Somatostatin Analogs

Somatostatin Dose: 6 mcg/kg/hour given as an infusion

Octreotide (Analog) Dose: 2.5 -10 mcg/kg/6hours SC

Lanreotide (Analog) Dose: 40 mg/14- 21 days SC
Somatostatin
Somatostatin and Somatostatin Analogs

- In the Pancreas it inhibits: glucagon, insulin and exocrine function.

- It also inhibits: Growth hormone, TSH, gastrin, cholecystokinin, VIP, among others.
Somatostatin and Somatostatin Analogs

• ADVERSE EFFECTS:
 – Tachyphylaxis
 – Malabsorption
 – Growth deceleration
 – Rarer are: Hepatitis, necrotizing enterocolitis, long QT syndrome and cholelithiasis
In our hospital it is only used when the medical treatment fails, in preparation for pancreatectomy. It is only used as an IV infusion with the patient on TPN.

Dose: 6 mcg/Kg/hour
Pharmacological treatment

Glucagon

- Glucagon stimulates glycogenolysis increasing hepatic glucose output.

- It is administered by intravenous, subcutaneous, or intramuscular routes.

- First line treatment during hypoglycemic crisis.

- It can be used as a last resource for the short term control of diazoxide unresponsive patients.
Managing Congenital Hyperinsulinism in the Neonatal Period

Vall d’Hebron Hospital’s Approach and Experience

Novel medications for diazoxide-unresponsive CHI

SIROLIMUS

EXENDIN
Medical Treatment

Glucose 15-25 mg/Kg/min

If Failure Add:
Diazoxide 10-20 mg/Kg/day

Surgical Treatment

18F-DOPA-PET/CT

Diffuse

Focal

Stabilization

Failure

Partial Pancreatectomy

Subtotal Pancreatectomy

Failure

Medical Treatment

Cure

Total or Near-total Pancreatectomy and Diabetes

Somatostatin
Since 1974 there have been 58 cases of PCHI diagnosed and treated at our centre.

- 41 of these have had genetic study (pending in 2).
 - 21 of them have presented ABCC8 mutations.
 - 18 were non-responders to diazoxide.
 - 1 GLUD
 - HNF4A
 - KABUKI
• Only 6 of 18 patients non-responders to diazoxide with ABCC8 mutations, have been pancreatectomized.
Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience

• In most cases it was possible to control the hypoglycemic events with intensive enteral support.

• The hyperinsulinemia eventually improved during evolution.
6 Euglucemic Patients

• Diagnosed in the newborn period except one diagnosed at 8 months.
• Currently they are 8, 10, 11, 13, 14 and 14 years old.
• Only one has neurological sequelae (seizures and a visual deficiency).

![Graph showing glucose levels over time](image-url)
Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience
2 Patients with Glucose Intolerance

- Diagnosed during the newborn period and at 7 months of age.
- Currently 14 and 18 years old.
The one diagnosed in the newborn period has severe neurodevelopmental delay.

Glucose intolerance at 6 years old.
Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience

Glucose intolerance at 10 months of age.
4 Diabetic Patients

• Three were diagnosed with CHI during the neonatal period, and one at 5 months of age.
• Currently 14, 32, 25, 39 years old.
• Diagnosed with diabetes from early adolescence to early adulthood.
• Two have no neurological sequelae, one has moderate neurodevelopmental delay, and one controlled seizures.
Managing Congenital Hyperinsulinism in the Neonatal Period
Vall d’Hebron Hospital’s Approach and Experience

• Natural history evolving to diabetes
 – New type of monogenic diabetes?
Thank you very much!

Muchas Gracias!