# Congenital hyperinsulinism

# Klaus Mohnike\* Jean-Baptiste Arnoux\*\*

\* Otto-von-Guericke University Magdeburg
 \*\* University Hopital Necker Paris



### Wipple's triad

- Glucopenic symptoms
  - Drowsiness
  - Fainting
  - Seizures
  - Hallucinations
  - Any kind of neurological symptoms
- Glycemia <3,0 mmol/l (55mg/dl)</li>
- Resolution of all symptoms after normalization of glycemia









Source: Expert Opinion on Orphan Drugs (2014) 2(8): 779-795

# Biological diagnosis of HI

- Fasting and/or postpandrial hypoketotic hypoglycemia (<2,5 mmol/l)</li>
- Inappropriate plasma insulin levels and c-peptide at time of hypoglycemia (in some cases, insulinemia can be seemingly null)
- Absent or low blood/urines ketone bodies and non-esterified fatty acids

JB

- An increase in blood glucose <1,7 mmol/l within 30 min after administration of 1 mg glucagon
- Need of high glucose infusion rate to keep blood glucose >3,0 mmol/l (>8 mg/kg/min)

Source: Expert Opinion on Orphan Drugs (2014) 2(8): 779-795

# Insulin/ glucose at diagnosis





JB

Syndromic CHI

Overgrowth syndrome

Beckwith-Wiedemann AD or S11p15.5

Perlman AR ?

Sotos S NSD1

Developmental syndrome

Kabuki syndrome AD or SMLL2

CDG syndrome AR PMM2 / PMI

Costello AD or SHRAS

Turner S Monosomy X



Source: Expert Opinion on Orphan Drugs (2014) 2(8): 779-795

- Beckwith-Wiedemann syndrome
  - » Macrosomia, ear lobe creased, macroglossia, umbilical hernia, hemihypertrophia, heart defects...









 Congenital disorder of glycosylation (CDG) syndrome type la&b



» strabism, progressive cerebellar atrophy, inverted nipple, abnormal fat distribution, lipoatrophy areas, abnormal coagulation factors...



### Kabuki make-up syndrome

• elongated palpebral fissures with eversion of the lateral third of the lower eyelid, skeletal anomalies (costal, vertebral or hips), fetal fingertip pads, failure to thrive, congenital heart defects, hormones deficiencies...







### Turner syndrome

SGA, pterygium coli, heart, aortic, kidney malformation, growth delay...







#### Transient CHI

- Newborns from diabetic mothers
- Small for gestational age babies (SGA)
- Perinatal stress
  - Fetal distress
  - Asphyxia at birth

#### Isolated CHI

- Channelopathie: ABCC8, KCNJ11,
- Metabolopathie: GLUD1, GCK, UCP2, HADH, SLC16A1
- HNF1A, HNF4A



Source: Expert Opinion on Orphan Drugs (2014) 2(8): 779-795







Wiedemann-Beckwith-Syndrome



Silver-Russell-Syndrome



### Autosomal-recessive







heterozygote, paternally inherited, recessive mutation





"Second-Hit in islets by paternally inherited mutation: 1:270

PET-scanning and CT-scan in one single device.

For simultaneous registration and fusion of 2 signals

- 1. tracer (e.g. F18-L-DOPA) by PET and
- 2. anatomical image by CT.





#### L-DOPA is a

transmitter substance in the nervous system.

precursor of catecholamines (= noradrenaline and adrenaline)

#### Neuroendocrine cells

take up and decarboxylate amine precursors,

e.g. L-DOPA and 5-hydroxytryptophan

store biogenic amines (= dopamine and serotonin)



#### L-DOPA

Pancreatic cells contain markers of neuroendocrine cells,

such as tyrosine hydroxylase, dopamine,

neuronal and vesicular dopamine transporter,

monoamine oxidases A and B.

Pancreatic islets take up L-DOPA and convert it to dopamine through

the Aromatic Amino acid Decarboxylase

AAAD.



- 1. No moving of patients necessary
- 2. No transmission radiation
- 3. Quick scanning times (< 4 min.)
- 4. Software allows:
  Alignment of PET and CT datasets measurement of distances
- 5. Data acquisition up to 5\* repeated
- 6. multiple time point imaging: from 20 to 60 min p.i.



- 1. Between 2004 and 2015, a [18F]F-DOPA-PET/CT was performed in 200 patients.
- 2. Analyses of 150 patients (67 girls, 83 boys) (median age: 0.53y; range: 0.09-30.35y.).
- 3. Mutation analysis of ABCC8 and KCNJ11 were carried out in the index patient and their parents.
- 4. Pancreatic surgery was done in focal form



#### Pancreas

located behind the stomach between the spleen and duodenum

Islets of Langerhans

- $\alpha$  cells glucagon
- β cells insulin
- ∆ cells somatostatin/gastrin



#### Focal form





#### Focal form





#### Diffuse form





#### Focal form





#### non-focal form





Localisation of important landmarks





### Intra operative diagnosis

Pre-operative ultra-sound





### Intra operative diagnosis

### Intra operative ultra-sound







# Intra operative diagnosis

### Intra operative ultra-sound





# Pathology / CHI diffuse



# Pathology / CHI focal

2.5-7.5 mmø



Normal islet outside the focal lesion. Shrunken ß cells (HES x200)



# Pathology / CHI atypical

- Mosaicism of the pancreatic islets (+/- 5% of severe CHI patients)
  - Described in two series 7/282 [Snider JCEM 2013] and 16/217 [Sempoux JCEM 2011]
- Pathology:
  - Normal pancreatic architecture
  - Large ß-cells & islets in several adjacent lobules
  - Outside of the lesion: 
     ß-cells normal or at rest.





and outside the lesion ProInsulin staining in

# Pathology / CHI atypical

- Distinct clinical course compared to DZX-unresponsive K<sub>ATP</sub> CHI
  - Normal birth weight
  - Late median age at presentation (150-165 days)
  - Can be cured by partial pancreatecomy
  - Increased incretin secretion after oral glucose load in some pts? [Shy J Pediatr 2013]
  - Undue expression of HK1 in the lesion (5 pts) [Henquin Diabetes 2013]
- Cause:
  - Somatic GCK mutation (1 pt/6 [Henquin Diabetes 2013])
  - Unknown



### Post-operative diagnosis

Focal islet-cell hyperplasia



### Post-operative diagnosis

Patient no 6:

Age at surgery: 6 months

ABCC8 mutation:

c.4241C>T, p.P1414L

Bi-allelic expression of both parental alleles

Loss of heterozygosity

Monoallelic expression of paternal mutant allele









gDNA normal pancreatic tissue

cDNA normal pancreatic tissue

gDNA focal lesion

cDNA focal lesion



### Post-operative diagnosis

### Summary: pUPD and expression of focal CHI

| Patient. No. | Exon | Mutation              |                        | Observed                      | Age at              | mRNA                          | LOH | Paternal |
|--------------|------|-----------------------|------------------------|-------------------------------|---------------------|-------------------------------|-----|----------|
|              |      | Nucleotide            | Protein                | freq.* [Ref.]                 | surgery<br>(months) | expression                    |     | UPD11p15 |
| ABCC8        |      |                       |                        |                               |                     |                               |     |          |
| 1            | 1    | c.50T>C               | p.V17A                 | 2* [11]                       | 10                  | monoallelic<br>mutant         | ++  | ++       |
| 2            | 10   | c.1530G>T             | p.K510N                | 1 [11]                        | 10                  | monoallelic<br>mutant         | ++  | ++       |
| 3            | 12   | c.1792C>T             | p.(R598*)              | Multiple<br>[CM050968]        | 7                   | no (NMD)                      | ++  | ++       |
| 4            | 22   | c.2560-<br>?_2697+?   | p.(D854_W8<br>99del46) | 2 [CG107114]                  | 8                   | monoallelic<br>r.2560_2697del | ROH | n.d.     |
| 5            | 34   | c.4162_4164d<br>eITTC | p.F1388del             | Multiple<br>[CD962164]        | 9                   | monoallelic<br>mutant         | ++  | ++       |
| 6            | 35   | c.4241C>T             | p.P1414L               | Multiple<br>[CM068331]        | 6                   | monoallelic<br>mutant         | ++  | ++       |
| 7            | 35   | c.4259C>T             | p.S1420L               | 1 [Barthlen et al, submitted] | 2                   | monallelic mutant             | +   | +        |
| KCNJ11       |      |                       |                        |                               |                     |                               |     | 1        |
| 8            | 1    | c.286G>A              | p.A96T                 | 1* [11]                       | 2                   | mutant/wt<br>75%/25%          | +   | +        |
| 9            | 1    | c.612C>A              | p.D204E                | 2<br>[CM083531]               | 2                   | monoallelic<br>mutant         | ++  | ++       |
| 10           | 1    | c.844G>A              | p.E282K                | 3 [CM071810]                  | 17                  | monoallelic<br>mutant         | ++  | ++       |
| 11           | 1    | c.901C>G              | p.R301G                | Multiple<br>[CM088147]        | 6                   | monoallelic<br>mutant         | (+) | +        |
|              |      |                       |                        |                               |                     |                               |     |          |

### Questions?



