

XeriSol™ Glucagon for Congenital Hyperinsulinism

September 2015

GLUCAGON

- increase glucose levels by stimulation of liver glycogenolysis
- 5-10μg/kg/h
- stimulate the beta cell to secrete insulin (Insulinsekretagogue)

side effects:

- Nausea, vomiting,
- reduced pancreatic enzyme secretion,
- reduced myocardial kontraction,
- Tachyphylaxis
- Erythema necrolyticum migrans

0/14/2015

GLUCAGON: WATER CREATES THE PROBLEM

- Poor stability
- Poor solubility

- Complicated formulations
- Reconstitution/Refrigeration
- Large volumes, painful

- Poor products
- Poor access
- Poor compliance

SOLUTION – REPLACE THE WATER!

Simplifying the formulation

Can eliminate many ingredients

often required in water-based

formulations

Intellectual Property

each step of formulation

Xeris has intellectual property at

Process allows two drugs to be

in a way not before possible

combined in the same formulation

Co-formulation

GLUCAGON PRODUCTS IN DEVELOPMENT

GLUCAGON PRODUCTS DEVELOPMENT STATUS

10/14/2015

EXCELLENT STABILITY IN OMNIPOD® INFUSION PUMPS AT 37° C

Study Highlights

- XeriSol™ Glucagon remained clear and free of particulates over 6 days inside the OmniPod® stored at 37°C
- No significant abnormalities observed in UV spectrum from 350 - 650 nm
- RP-HPLC and SE-HPLC showed high glucagon purity maintained over 6 days inside the OmniPod® stored at 37°C
- Minor and insignificant

leachables detected

XERISOL GLUCAGON IS EQUALLY EFFECTIVE AS NOVO GLUCAGEN® WHEN DELIVERED FROM AN OMNIPOD® PUMP

Mean (\pm SEM) Plasma Glucose and Glucagon Concentrations after a Single Dose of Xeris or Novo Glucagon (2.0 μ g/kg, \sim 150 μ g)

Xeris glucagon was stored for 5 months as a liquid, Novo GlucaGen® reconstituted immediately prior to use!!

GLUCAGON INFUSION IS STANDARD OF CARE IN HOSPITAL

Cook Children's Medical Center - glucagon experience

»10 patients using current

»7 patients treated with glucagon during stabilization pre-surgery –

(4 focal, 3 diffuse)

	iviean	Range
Birth weight (Kg) Age at start of glucagon(days) Dose of glucagon (mcg/kg/hr)	4.3 21 10	3.1 -5.3 3 - 45 7.9 – 13
Max GIR pre glucagon(mg/kg/min) Min GIR on glucagon(mg/kg/min)	23 7.2	14 – 41 1.8 – 8
Duration of glucagon(days)	9.4	4 - 15

`75% reduction in GIR

»Complications

- ■5 of 8 PICC lines became blocked and needed replacement (1.9F PICC lines)
- Hypoglycemia occurred in each patient with a blocked line
- »2 patients arrived on glucagon; weaned off for diagnosis (1 focal, 1 diffuse)
- »1 patient with Transient Perinatal Stress HI treated for 74 days due to complex medical problems weaned to 1.4mcg/kg/hr and maintained euglycemia on a 4.1mg/kg/min GIR

GLUCAGON

Mohnike et al. 2008 Retrospective Study

Patient	No operation			Glucagon after	Glucagon after operation		Preoperative glucagon			
	1	2	3	4	5	6	Tec 1	Tec 2	Tec 3	
Gender	P	F	M	F	M	M	M	F	F	
Histologic type; age at pancreatic surgery	No surgery	No surgery	No surgery	Diffuse 3 weeks	Diffuse, repeated pancreatic operations at age 33 and 88 days, 2.5 years	Diffuse	Focal 4 months	Diffuse 5 months	Focal 6.5 months	
Mutation in ABCC8 (SUR1)	Not tested	Not tested	R1437Q paternal allele only	1672-9T>A/ 2698-2A>G	DelF 1388/3992-9 G>A	4481 G>A paternal allele only	One allele D1471N	50T>C/ 2394-1G>A	Not tested	
Gestation age, weeks	40	Full term	40	37	Information not available	38	40	40	30	
Birth weight, g	4,280	Information not available	3,110	3,820	3,544	3,955	3,600	4,800	1,870	
Age of initial hypoglycemia, h	36	Seizures at 2 months of age	24	4	72	Birth	24	6	18	
Presenting blood glucose, mmol/l	1.1	1.5	1.3	0.9	1.1	1.3	0.5	0.8	0.8	
Insulin at hypoglycemia, mU/I	26.0	8.8	5.6	218.0	Information not available	50.0	19.0	419.0	14.5	
Glucose infusion rate, mg/kg/min	16.0	7.0	20.0	14.0	Information not available	14.0	20.0	26.0	14.0	
Maximum dose of octreotide, μg/kg/day	15	10	15	None	20	8	35	10	30	
Age at start; maximum dose of s.c. glucagon, mg/kg/day	46 days; 0.026	5.5 months; 0.24	165 days; 0.8	120 days; 0.4	0.1	43 days; 0.41	27 days; 0.25	42 days; 0.26	112 days 0.46	
Discharge from hospital with glucagon	8 weeks	Transferred to local hospital on combination therapy and then home		10 weeks	3 months	No	8 weeks	No	No	
Blood glucose <2.6 mmol/l during s.c. glucagon	None	None	None	None		Information not available	<3 times/ month	5 times/ month	None	
Duration of glucagon treatment	4 years	>4 months	6 weeks	1.3 years	2 years	10 days	2.5 months	3.5 months	Days	
Age at last presentation	5 years	9.5 months	8 months	1.5 years	10 years	6.5 months	7 years	6 years	2 years	
Erythema necrolyticum	No	No	No	No	No	No	No	Yes	Yes	

Tec = Glucagon-Technosphere™.

.0/14/2015

THE PROMISE OF SC GLUCAGON AS LONG-TERM TREATMENT FOR CHI

Mohnike et al. 2008 Retrospective Study

- » SC glucagon continued for 1-4 years in 3 of 6 children without further symptomatic hypoglycemia, convulsions or unconsciousness
- » Central glucose infusions significantly reduced or eliminated in all 9 children.

10/14/2015

THE PROMISE OF SC GLUCAGON AS LONG-TERM TREATMENT FOR CHI

Mohnike et al. 2008 Retrospective Study

- Glucagon treatment initiated to manage recurrent hypoglycemia after subtotal pancreatectomy in 2 of 9 children;
- Pancreatectomy or subsequent resurgeries avoided in 5 of the 9 children
- » Octreotide was reduced to 8-15 μg/kg/day – considerably lower than if it were given alone, without glucagon (15-60 μg/kg/day)

CURRENT OFF-LABEL USE OF GLUCAGON

PROGRAM SUMMARY

- » Orphan Product Designation received from FDA and EMA
- » \$2M NIH-NIDDK grant received
 - Collaboration with Drs. Thornton (Cook Children's) and DeLeon (CHOP)
 - Funds juvenile toxicology study
 - > Funds short-term clinical trial in US centers
- » Significant leverage from other glucagon programs
 - Non-clinical chronic toxicology program
- » Pre-IND interaction with FDA
 - Filing IND in October 2015
- » Short-term POC clinical trial to start in 1Q16

XERISOL GLUCAGON FOR CONGENITAL HYPERINSULINISM

September 2015

PRESENTATION OVERVIEW

- » XeriSol Technology Overview
- » Xeris Glucagon Programs
- » Current Off-Label Use of Glucagon
- » Continuous Subcutaneous Infusion (CSI)
 Glucagon for Treatment of CH
- » CSI Clinical Development Plans