Exendin-(9-39): Investigational Drug for the Treatment of Hyperinsulinism

Diva D. De León-Crutchlow, MD, MSCE
Director, Congenital Hyperinsulinism Center
The Children’s Hospital of Philadelphia
Exendin-(9-39)

- Derived from exendin-4 - - Exenatide (Byetta®) approved for type 2DM
- Blocks the effects of the incretin hormone Glucagon-like peptide-1 (GLP-1)
- GLP-1 is secreted in response to ingested nutrients and is a potent stimulator of insulin secretion
Role of GLP-1 in the pathophysiology of hyperinsulinism

- Need for exogenous glucose to maintain euglycemia decreases when babies with hyperinsulinism are kept without food for a few hours
 - Suggest an enhanced "incretin" effect in hyperinsulinism
The Incretin Effect

In - cre - tin
Intestine Secretion Insulin

N. McIntyre et al. Lancet 2:20-21, 1964
Incretin Hormones

- Gut-derived peptides that increase glucose-stimulated insulin secretion
- Glucose-dependent insulinotrophic polypeptide (GIP) first incretin isolated (1970)
- Glucagon-like peptide-1 (GLP-1) more potent and physiologically important incretin
- GIP and GLP-1 account for 90% of incretin response
Glucose lowering effects of GLP-1

- GLP-1 is secreted in response to ingested nutrients and is a potent stimulator of insulin secretion
- GLP-1 has other glucose lowering effect including: inhibition of glucagon, gastric emptying and appetite
- GLP-1 acts through a receptor in the pancreatic beta cells to stimulate insulin secretion
- Therapies targeting the GLP-1 receptor are now approved for the treatment of type 2 diabetes
Exendin-(9-39) inhibits amino acid-stimulated insulin secretion in HI islets

P=0.001

P=0.003

Calabria, Li, Gallagher, Stanley, De León. *Diabetes*, 2012
Preclinical proof-of-concept studies with Exendin-(9-39)

- Exendin-(9-39) prevents fasting hypoglycemia in mouse model of K_{ATP} hyperinsulinism

Pilot Clinical Proof-of-Concept Study

- Pilot study to examine the effect of exendin-(9-39) on fasting blood glucose of subjects with K_{ATP} Hyperinsulinism

- **Methods:**
 - 9 subjects
 - Randomized, open-label, two-period complete crossover
 - Fasted subjects received an intravenous infusion of exendin-(9-39) (100, 300 and 500 pmol/kg/min) or vehicle for 6 hours in 2 consecutive days (in random order)
 - Primary outcome: Blood glucose levels

www.Clinicaltrials.gov: NCT00571324
Subject Characteristics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Gender</th>
<th>Mutation (ABCC8)</th>
<th>Pancreatectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>F</td>
<td>delF1388 + 3992-9 G>A</td>
<td>85%</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>M</td>
<td>delS1387*</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>M</td>
<td>S408P*</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>F</td>
<td>3992-9 G>A</td>
<td>95%</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>F</td>
<td>3992-9 G>A</td>
<td>95%</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>M</td>
<td>delS1387*</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>F</td>
<td>delS1387*</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>47</td>
<td>F</td>
<td>R1353H*</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>37</td>
<td>F</td>
<td>R521Q*</td>
<td>None</td>
</tr>
</tbody>
</table>

Dominant
Exendin-(9-39) increases fasting blood glucose

Calabria and De León. Diabetes, 2012
Exendin-(9-39) suppresses plasma insulin

Calabria and De León. *Diabetes*, 2012
Exendin-(9-39) prevents protein-induced hypoglycemia in K_{ATP}H1

<table>
<thead>
<tr>
<th></th>
<th>Vehicle (n=8)</th>
<th>Exendin-(9-39) (n=8)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose nadir (mean, SD) mg/dL</td>
<td>55.1 (2.9)</td>
<td>70.4 (5.7)</td>
<td>0.02</td>
</tr>
<tr>
<td>AUC (mean, SD) mg/dL*min</td>
<td>12559 (2097)</td>
<td>18675 (4230)</td>
<td>0.008</td>
</tr>
<tr>
<td>% Subjects < 60 mg/dL (n=8)</td>
<td>87.5%</td>
<td>37.5%</td>
<td>0.046</td>
</tr>
<tr>
<td>% Subjects < 50 mg/dL (n=8)</td>
<td>37.5%</td>
<td>0%</td>
<td>0.083</td>
</tr>
</tbody>
</table>
Safety Profile

- Excellent safety profile in preclinical studies
- Well tolerated
- No significant adverse events in participating children
Summary:

- GLP-1 and its receptor may play a role in the pathophysiology of \(K_{\text{ATP}} \)HI.

- In mouse and human \(K_{\text{ATP}} \)HI pancreatic islets, exendin-(9-39) inhibits insulin secretion.

- In adolescents and adults with \(K_{\text{ATP}} \)HI, exendin-(9-39) increases fasting plasma glucose.

- Exendin-(9-39) prevents protein-induced hypoglycemia in children with \(K_{\text{ATP}} \)HI.

- Proof-of-concept single dose escalation study in neonates ongoing.
Acknowledgements

Collaborators
Charles A. Stanley
Chang Li
Franz Matschinsky
Chee Ng
Steven Seeholzer

CHOP HI Center
Enyo Dzata
Jenny Kloss
Linda Boyajian
Nicole Stewart
David Langdon
Katherine Lord
Susan Becker
Scott Adzick
Eduardo Ruchelli
Tricia Bhatti
Lisa States

HI Families

CHOP CTRC
De León’s Lab
Puja Patel
Mary E. Vajravelu
Stephanie Givler
Jamie Koh
Lauren Depolo
Jinghua Chai

Funding
NIDDK
FDA
NORD
Mario Batali Foundation
The Goldsmith Foundation
Foerderer Award
The Lester and Liese Baker Foundation
CTCR UL1RR024134

Picture courtesy of Dr. Colin Hawkes