Future Therapies in the Treatment of Diabetes: Islet Transplantation

Michael R. Rickels, MD, MS
Associate Professor of Medicine
University of Pennsylvania Perelman School of Medicine
Medical Director, Pancreatic Islet Cell Transplant Program
Hospital of the University of Pennsylvania

Congenital Hyperinsulinism Family Conference
April 17, 2016
Pancreatic islets of Langerhans

~ 1 million islets comprise 2-3% of the total pancreatic mass

Red = β-cells, stained for insulin
Green = α-cells, stained for glucagon
Islet cell responses defend against hypoglycemia

↓ Plasma Glucose → Islet Cell Responses → ↓ Insulin Secretion → ↑ Hepatic Glucose Production → ↑ Plasma Glucose

↑ Glucagon Secretion

↑ Hepatic Glucose Production
Case - continuous glucose monitoring
Pancreas transplantation

Larsen. Endocrine Reviews 25: 919, 2004
Glycemic control in pancreas transplantation

B

Glucose concentration (mg/dL)

Time

12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM 8:00 PM 12:00 AM

Kessler et al. Diabetes Care 25: 2256, 2002
β-cell secretory capacity in pancreas transplantation

![Graph showing insulin levels over time for different groups.

- PANCREAS-KIDNEY TRANSPLANT
- KIDNEY TRANSPLANT
- KIDNEY DONOR

ARGinine (5 g) 230 mg/dl clamp 340 mg/dl clamp

MINUTES

Rickels et al. J Clin Endocrinol Metab 95: 1238, 2010
Islet cell responses to hypoglycemia in pancreas transplantation

β-cell response

Insulin and variable glucose i.v.

α-cell response

Insulin and variable glucose i.v.

C

MINUTES

MINTUS

PG PEPTIDE (nmol/L)

GLUCAGON (ng/L)
Islet transplantation

Deceased Donor
no diabetes

Recipient
type 1 diabetes
NIH Clinical Islet Transplantation (CIT) Consortium

T1D & Severe Hypoglycemia

CIT07 (N=11/48)
Thymoglobulin
Etanercept
Heparin
Tacrolimus
Sirolimus

T1D & Kidney Allograft

CIT06 (N=2/24)
Thymoglobulin
Etanercept
Heparin
Tacrolimus
MMF

Islet Transplantation #1

Insulin-Independence at day 75

Islet Transplantation #2

Primary Endpoint: HbA1c < 7% and free from severe hypoglycemic episodes at one year following the initial transplant

www.citisletstudy.org
Clinical endpoint – HbA₁c <7.0% w/o hypoglycemia

<table>
<thead>
<tr>
<th>Consortium</th>
<th>IE/kg</th>
<th>HbA₁c Pre</th>
<th>HbA₁c 1 Year</th>
<th>HbA₁c 2 Years</th>
<th>A₁c <7% No SH 1 Year</th>
<th>A₁c <7% No SH 2 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian¹</td>
<td>15,366</td>
<td>8.3%</td>
<td>6.5%</td>
<td>N.D.</td>
<td>82%</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>n = 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK²</td>
<td>8,770</td>
<td>8.0%</td>
<td>6.3%</td>
<td>6.2%</td>
<td>N.A.</td>
<td>55%</td>
</tr>
<tr>
<td></td>
<td>n = 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAGIL³</td>
<td>9,716</td>
<td>8.1%</td>
<td>6.2%</td>
<td>N.D.</td>
<td>83%</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>n = 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH-CIT07⁴</td>
<td>pending</td>
<td>pending</td>
<td>pending</td>
<td>pending</td>
<td>pending</td>
<td>pending</td>
</tr>
<tr>
<td></td>
<td>n = 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ O’ Connell ….Kay Am J Transplant 13: 1850, 2013
³ Lablanche et al. Diabetes Care in press, 2015
⁴ www.citisletstudy.org
Long term metabolic control with CIT07 at Penn

Glycemic control

Insulin use

Updated from Rickels et al. Diabetes 64: 1713, 2015
Glycemic control in islet transplantation
β-cell secretory capacity in islet transplantation

Updated from Rickels et al. *Diabetes* 62: 2890, 2013
Islet cell responses to hypoglycemia in islet transplantation

β-cell response

- Normal Hypoglycemia
- Normal Euglycemia
- T1D Post-Transplant Hypoglycemia
- T1D Post-Transplant Euglycemia

α-cell response

- T1D Pre-Transplant Hypoglycemia
- T1D Post-Transplant Hypoglycemia
- Normal Hypoglycemia

Updated from Rickels et al. *Diabetes* 64: 1713, 2015
Islet replacement restores defense against hypoglycemia

- Islet Transplantation
 - ↓ Plasma Glucose → Islet Cell Responses
 - ↓ Insulin Secretion
 - ↑ Glucagon Secretion
 - ↑ Hepatic Glucose Production
 - ↑ Plasma Glucose
Summary

- Intrahepatic transplantation of purified islets isolated from a deceased donor pancreas offers an alternative to whole pancreas transplantation that can restore physiologic insulin delivery and islet function, thus stabilizing glycemic control with protection against hypoglycemia.

- The primary endpoint for evaluation of clinical islet transplantation is a HbA1c < 7.0% without severe hypoglycemia episodes.

- Current protocols may result in recovery of sufficient β-cell secretory capacity to afford durable graft survival that resists metabolic exhaustion.

- The benefits of islet transplantation on long-term improvement in glycemic control, especially amelioration of glycemic instability and problematic hypoglycemia, must be balanced against the risks for procedural complications and of the immunosuppressive drug therapy.
Acknowledgments

Transplantation Surgery
Ali Naji, M.D., Ph.D.
Clyde Barker, M.D.
James Markmann, M.D., Ph.D. (now at MGH)
Eileen Markmann, R.N., B.S.N.
Maral Palanjian, R.N.

Islet Isolation Laboratory
Chengyang Liu, M.D.
Kumar Vivek, M.D.
Zaw Min, M.D.
Zhonglin Wang, M.D.
Yanjing Li

Pathology & Laboratory Medicine
Malek Kamoun, M.D., Ph.D.
Eline Luning-Prak, M.D., Ph.D.

Interventional Radiology
Richard Shlansky-Goldberg, M.D.

Monell Chemical Senses Center
Karen Teff, Ph.D. (now at NIDDK)

Endocrinology, Diabetes & Metabolism
Mark Schutta, M.D.
Scott Soleimanpour, M.D.
Carla Sawan, M.D.
Amy Peleikis, M.S.N., C.R.N.P.
Carissa Fuller, C.R.N.P.
Ginger Bakes, C.C.R.C.
Rebecca Mueller, C.C.R.C.
Stephanie Kong, M.S.
Kevin Cullison, M.D.
Allen Chiou, M.D.
Janice Tiao
Huong-Lan Nguyen

Cardiovascular Medicine
Muredach Reilly, M.D.
Jane Ferguson, Ph.D. (now at Vanderbilt)

NIDDK, NIAID, NCATS, JDRF, W.W. Smith, Schiffrien, Humpton