Senthil Senniappan
MD, FRCPCH, PhD

Consultant Paediatric Endocrinologist &
Honorary Senior Lecturer
Alder Hey Children’s Hospital, Liverpool, UK
CHI

Persistent

Transient

Diazoxide responsive

Diazoxide unresponsive

Persistent
Histological subtypes

Diffuse disease

Histological abnormalities in beta cells throughout the pancreas

Focal disease

Focal islet-cell hyperplasia within the lesion, rest of the pancreas normal
18F-DOPA-PET/CT
Focal lesion in head of pancreas junction of portal vein and SMV (6.1mm)

Outline of pancreas

18-F-DOPA PET/CT Scan
Focal lesion at tip of pancreas, junction of spleen and left kidney (5.1mm)
Laparoscopic Surgery

Focal lesion
Diffuse disease
Surgery

• Severe diffuse CHI – unresponsive to diazoxide/octreotide

• 95% to 98% pancreatectomy

• Post op complications – ongoing hypoglycaemia, diabetes mellitus, exocrine pancreatic insufficiency
Surgery - Outcomes

• 105 children (58 diffuse)
• Diffuse - 59% still had hypoglycemia requiring medical treatments (resolved by 5 years)
• Hyperglycaemia in 53% immediately after surgery & 100% by 13 years of age
• The cumulative incidence of insulin-treated patients was 42% at 8 years & 91% at 14 years of age

Long term Medical Treatment

• Review of case series/reports on 619 CHI patients (till 2013)

Diazoxide (84%)

• Mean dose of diazoxide: 12.5 (±4.3) mg/kg/day (range 2–60)
• Mean duration of treatment until remission: 5 years
• Side effects of diazoxide were usually not severe

Long term Medical Treatment

Somatostatin analogues (16%)

- Mean dose of octreotide 14.9 ± 7.5 μg/kg/d (range 2.3–50)
- Lanreotide 67.3 ± 39.8 mg/month (range 10–120)
- Mean duration of treatment until remission: 4 years
- Frequent side effects: tachyphylaxis and mild GI symptoms
- The risk of persistent growth deceleration was low (<5 %)

Others: Glucagon, Ca channel blockers, high calorie diet

Newer/Futuristic Therapeutic options

• Long acting somatostatin analogues
• mTOR inhibitors
• GLP1 receptor antagonists
• Long-acting soluble glucagon
• Specific somatostatin receptor agonists
• Insulin receptor antibody
Long acting Somatostatin Analogues

- Selective binding affinity for SSTR 2 and 5
- Unlicensed for CHI

Somatuline autogel (Lanreotide)
- 30,60,90mg prefilled syringe
- Rapid-release phase, followed by a long-lasting phase of slow release

Sandostatin LAR (octreotide)
- 10,20,30mg vials
- Slow release during the first 2 weeks and then increases quickly to reach a stable phase between 3 and 4 weeks
Long acting Somatostatin Analogues

- For patients who do not respond or tolerate diazoxide after a trial of s/c Octreotide

Starting dosage

- **Lanreotide** 30–60 mg deep subcutaneous every 4 weeks
- **Sandostatin-LAR** 10 mg intramuscularly every 4 weeks
Benefits

• Better quality of life
• No more daily injections
• Less trauma and pain
• More freedom for child and parents
• Easier to travel – car journeys, flying, holidays
• Cost effective
Side-effects

- Allergic type reactions / local reactions
- GI side effects - anorexia, nausea, abdominal pain, bloating, flatulence, loose stools
- Decrease gallbladder contractility - cholestasis, hepatic dysfunction and gall stones
- Suppression of growth and thyroid hormones (rare)
- Risk of NEC in neonates
- Tachyphylaxis
Monitoring

- Regular blood glucose monitoring and/or CGMS
- Liver function every 4–6 weeks
- Abdominal ultrasound every 3–6 months
- If (asymptomatic) cholelithiasis is present, ursodeoxycholic acid (UDCA) could be tried
- Growth and thyroid function at least 6-monthly
Studies...

Evidence..

- **27** patients (2 focal) in 6 centres [retrospective]
- Beneficial in **89%** [not all had CGMS]
- **48%** some side effects (mainly raised liver enzymes)
- **11%** discontinued due to side effects (local abscess, raised ALT)
- Starting age **2m-17 years**
- Duration of treatment **1-72 months** (average 18 months)
- Dose **5mg-90mg**/month
- Majority on combined therapy with enriched feeds/Diazoxide

mTOR inhibitors

- Used in insulinoma in adults and paediatric post-transplant
- Noted to be beneficial in some severe diffuse CHI patients unresponsive to diazoxide/octreotide
- **Sirolimus** (oral): starting dose 0.5mg/m²/day (max 3mg/m²/day), aim serum level 5-15ng/ml
- Immunosuppressive - close monitoring of serum levels, blood counts, oral cavity, renal and liver function & lipids

Extreme caution on the use of sirolimus for the congenital hyperinsulinism in infancy patient. Banerjee I, De Leon D, Dunne MJ. Orphanet J Rare Dis. 2017 Apr 14;12(1):70

GLP-1

- Glucagon-like peptide-1: produced in L-cells of the intestine in response to meal

- **Stimulates insulin secretion** & inhibits glucagon secretion

- Also inhibits hepatic glucose production, gastric emptying, and appetite
Exendin (9-39)

- Specific GLP-1 receptor antagonist
- Normalizes fasting hypoglycemia in SUR-1(-/-) mice by reducing insulin secretion
- Randomized, open-label, crossover study: 9 K(ATP)HI patients received either exendin-(9-39) or vehicle on two different days; mean nadir blood glucose and glucose AUC were significantly increased by exendin-(9-39)
- Exendin-(9-39) significantly inhibited amino acid-stimulated insulin secretion in pancreatic islets from neonates with K(ATP)HI

Mean fasting blood glucose ± SEM during vehicle and exendin-(9-39)

Pasireotide

- Newer somatostatin analogue – more specific binding to SSTR5
- Inhibition of insulin secretion: SSTR2 and SSTR5
- Inhibition of glucagon secretion: SSTR2
- Octreotide inhibits both insulin and glucagon secretion but Pasireotide suppresses predominantly only insulin
- Used in adults for Cushing’s disease and PPHH – not currently used in children for any medical indication
- Small pilot study to assess the effect of s/c Pasireotide on preventing hypoglycemia due to hyperinsulinism was proposed in >18 years (study withdrawn...as per Clinical Trials website)
CRN02481 (Crinetics Pharmaceuticals)

- New class of **oral selective nonpeptide somatostatin [SST5] agonist**
- Inhibits insulin secretion while avoiding glucagon suppression
- In rats treated with CRN02481 - blood glucose normalised and at higher doses, hyperglycaemia was noted
- Optimizing the good manufacturing process [GMP], synthesis and performing good laboratory practice [GLP]
- Planned for initiating **Phase 1** human proof-of-concept clinical trial that evaluates inhibition of insulin secretion and its effects on blood glucose in **2019**
RZ358 (Rezolute)

• **Intravenous human monoclonal antibody** - counteracts the effects of hyperinsulinemia via allosteric modulation of INSR

 • Reverses hypoglycemia in hyperinsulinemic mice and rats

 • Increases PP glucose and induces insulin resistance in adults

 • Single dose **IV XOMA 358** in CHI patients >12 years – increased fasting and postprandial glucose [hypo reduced by nearly 50%]

 • Demonstrated proof-of-concept and safety in Phase 2a studies

 • **RZ358** has received designated orphan status in the US & EU

 • Rezolute plans to advance clinical development
Novel Soluble Glucagon(s)

- Glucagon - useful in acute phase to stabilise blood glucose (IV/SC/IM) but not stable in aqueous solutions
- Available as lyophilized powder - once reconstituted - begins to degrade and fibrillate rapidly
- Unstable and unsuitable for use long term use in pumps

Newer Soluble Glucagon Preparations

- Dasiglucagon (Zealand pharma)
- CSI-Glucagon™ (Xeris Pharma)
- AmideBio
Dasiglucagon (Zealand pharma)

• Glucagon analog with improved solubility and stability
• **Single dose:** Phase 2 – in T1DM with hypo-achieved glucose increases of >20 mg/dL within a median time of 9-10 mins – safe and tolerated – Phase 3 underway

• **Multi-dose:** Phase 2a studies – in dual-hormone artificial pancreas system in T1DM (with Beta Bionics) – effective, safe and well tolerated; Phase 2b (longer duration) planned

• Received a positive opinion on orphan medicinal product application in US and EU
CSI-Glucagon™ [Xeris Pharma]

- Stable Non-Aqueous Glucagon for Severe Hypoglycemia
- Effective and safe in adults with experimental hypoglycemia
- Phase 3 studies to be undertaken for developing the ready-to-use glucagon auto-injector for hypoglycemia
- **S/c infusion using Omnipod pump** for 48hrs – recruiting for Phase 2 (proof of concept) multi-center, randomized, placebo-controlled, double-blind trial - to assess the efficacy in children < 1 year of age with CHI
- Expected completion Jan 2019
Conclusions

• **Diazoxide** – first line of therapy

Diazoxide unresponsive: rapid genetic testing

• **Focal** – DOPA PET CT, Surgery

• **Diffuse** – medical (octreotide, novel therapies) or surgery

• **Newer/Futuristic medical options...**
Thank You

Alder Hey Children's Hospital, Liverpool, UK