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Novel molecular mechanisms of 

disease 

Mechanistic studies in pancreatic 

islets 

New modalities of 

treatment/management of 

hypoglycemia and hyperglycemia in 

patients with hyperinsulinism 

 

Translational research program 

Novel molecular mechanisms of 

disease 



Mutations in 882 Children with Congenital HI (1997-2018) 

Diazoxide-Responsive 

(355) 

focal (1 rec KATP) 

diffuse (2 rec KATP) 

Diazoxide-Unresponsive 

(527) 

zero mutations 

1 dom KATP 

1 dom GLUD1 



CHOP HI Research.  
 Using Genetic Testing to Improve Patient Care 

• Example: Results of CHOP HI Center genetic series show that we can 
predict which infants have focal HI: a single paternal recessive KATP 
mutation predicts focal HI (>95% accuracy) 

 

• BUT….Important obstacles for using genetic results: 

 Obstacle #1: Because 70% of KATP mutations are novel, we can’t predict 
whether a new variant is disease-causing vs. benign; dominant vs. recessive; 
diazoxide-responsive vs. unresponsive.  

 Obstacle #2: 3 distinct types of KATP mutations: 

1) HI bi-allelic recessive mutations cause diazoxide-unresponsive diffuse HI 

2) mono-allelic paternal recessive mutations cause diazoxide-unresponsive focal HI 

3) mono-allelic dominant mutations cause diazoxide-responsive or unresponsive 
diffuse HI 

 Obstacle #3. Many children with HI (especially diazoxide-responsive cases) do 
not have a detectable mutation 



CHOP HI Research.  
 (1) Using Genetic Testing to Improve Patient Care 

Studies in progress to characterize novel KATP mutations by two methods: 

 

1. In-vitro: studies with Dr. Show-ling Shyng (Portland, OR) to examine the 
function of novel missense KATP mutations by expression in COS cells (Golgi 
processing, Rb efflux, electrophysiology):  

Recessive = non-trafficking.  Dominant = trafficking, but low activity] 

 

2. In-vivo: studies by Dr. Stanley &  Dr. De Leon to test whether mutation carriers 
(parents) are normal (recessive mutation) or abnormal (dominant mutation) 
using 24-hour fasting studies and provocative tests (oral protein, oral glucose) 

 

 

 Preliminary observations suggest that oral protein challenge test of the carrier 
parent may be an easy, rapid way to determine whether a novel missense 
variant in ABCC8 or KCNJ11 is a dominant disease-causing mutation (e.g., 
predict whether a single paternal missense mutation means diffuse or focal HI) 



CHOP HI Research.  
 (2) The problem of “missing” mutations in diazoxide-
unresponsive “atypical HI” (LINE HI) (Boodhansingh, Li, Ganguly, 
Bhati, Stanley, DeLeon) 

• Hypothesis: the 9% of diazoxide-unresponsive children with NO mutation may 
have embryonic (“mosaic”) mutations  

 

• Testing 12 cases with LINE HI (“atypical HI”) 
• Functional studies of isolated islets from atypical vs normal regions 

• Use of both conventional Sanger and Next-gen Sequencing of isolated islets or whole 
pancreas cDNA and genomic DNA to identify “missed” dominant mutations in GCK or 
ABCC8 

• Verify detection of mosaic mutations in peripheral blood DNA 

 

• Preliminary observations: 
• In most LINE HI cases we can detect very low-level mosaicism (4-8%) for dominant 

mutations of either ABCC8 or GCK in isolated islets and/or pancreas, but the mutations 
cannot be detected in peripheral blood) 

• Implication: children with “missing” mutations very likely have embryonic, mosaic 
mutations in a known dominant HI gene, rather than in an undiscovered HI gene:  

• GCK & ABCC8 for diazoxide-unresponsive HI  
• (2 GCK mutations detected in peripheral blood) 

• ABCC8, KCNJ11, GLUD1 for diazoxide-responsive HI  
• (2 GLUD1 mutations detected in peripheral blood) 



CHOP HI Research.  
 (3) The problem of “missing” mutations in diazoxide-
responsive HI (Boodhansingh, Ganguly, Stanley, DeLeon) 

• Hypothesis #2: although many of the 60% of diazoxide-responsive children 
with NO mutation probably have mutations in known dominant genes, some 
might have mutations in novel genes 

 

• Testing of 7 families cases with dominant HI (one or two affected children 
plus one affected parent) 

• Phenotype testing of affecteds (fasting, oral glucose, oral protein) 

• Whole exome/genome sequencing of trio (patient and both parents) 

• Analyzing sequences for novel rare variants in potential candidate genes (~200-
400 / case) 

 

• Preliminary findings: 

• We have identified 3 candidate novel genes in two families  

• Work is in progress to validate the findings and to design functional expression 
assays to verify the mutations 



Monogenic HI 

Most common: 

KATP Channel Defects 

GLUD1 

GCK 

Rarer genes: 

SCHAD 

UCP2 

MCT1 

HK1 

HNF4A 

HNF1A 

CACNA1D 

 PGM1 

 KCNQ1 

 KMT2D 

 KDM6A 

Syndromic HI 

Beckwith-Wiedemann 

Kabuki (KS1, KS2) 

Turner 

Sotos 

Congenital Disorders of  

 Glycosylation (CDG) 

Perlman 

Simpson-Golabi-Behmel  

Costellos 

Timothy 

Neonatal Hypoglycemia 

Transitional Hypoglycemia (HI) 

Perinatal-Stress HI 

CHOP HI Research.  

 (4) Mechanism(s) of HI in Syndromic Forms of HI: Beckwith-Wiedemann 

Syndrome and Turner Syndrome (Boodhansingh, Ganguly, Stanley, DeLeon, Kalish) 



Hyperinsulinism in Beckwith-Wiedemann Syndrome 

Kalish JM, et al. J Med Genet 2015  

• Features: macrosomia, macroglossia, 

hemihypertrophy, omphalocele, ear pits 

• Locus: BWS imprinted locus on 11p 

(distal to KATP) 

• Hyperinsulinism in 50% of BWS, usually 

transient, often responsive to diazoxide 

and resolves within first few months 

• However ~5 % have persistent HI that 

does not respond to diazoxide 

 

Question: what is the molecular basis for 

severe HI in BWS? 



CHOP HI Research.  
 (3) Mechanism(s) of HI in Syndromic Forms of HI: 
Beckwith-Wiedemann Syndrome and Turner Syndrome 
(Boodhansingh, Ganguly, Stanley, DeLeon, Kalish) 

• Beckwith-Wiedemann Syndrome is a fetal-overgrowth disorder (larger birthweight, hemi-hypertrophy, 
large tongue) persistent HI in ~25%. Caused by defects in the imprinted region on chromosome 11p. 
Three forms: IC2 hypomethylation (50%), IC1 hypomethylation (10%), paternal 11p UPD (20%). 

• In 26 of 28 BWS children, persistent HI was caused by paternal 11p UPD; 2 other milder cases had IC2 mutations (Kalish JM, 
et al. J Med Genet 2015)  

• Note: focal HI involves paternal 11p UPD plus a paternal KATP mutation.....4 of the 28 11pUPD BWS cases also had a 
paternal KATP mutation resulting in extremely severe HI 

• HI in 11pUPD BWS may be due to islet overgrowth plus loss of KCNQ1 (a membrane channel needed to turn off insulin 
secretion) 

 

• Turner Syndrome is a mosaic X-chromosome anomaly occurring in 1 in 2,500 girls; features include 
short stature, infertility, and cardiac defects. Since 1979, 6 cases of HI reported in girls with Turner 
Syndrome; some reports suggest HI might be associated with a ring-X defect.  

• CHOP HI series (1979-2017) includes 12 girls with TS & HI.  

• Frequency of HI & TS was ~50 times higher than expected (10 in 525 girls vs 1 in 2,500); we estimate the 
incidence of HI in girls with TS is 1 in 1,000, or higher. 

• The only consistent X-chromosome defect in TS & HI was loss of one X chromosome in at least a subset 
of cells, not the presence of a ring-X. 

• Speculation: HI in Turner Syndrome may be due to haplo-insufficiency for KDM6A which is a chromatin 
histone H3 demethylase on the X-chromosome.  This may be similar to Kabuki Syndrome, type 2, which 
is caused by inactivating mutations of KDM6A. 



 http://www.chop.edu/service/congenital hyperinsulinism-
center/home.html 

 215-590-7682  

 hyperinsulin@email.chop.edu 

 

CHOP HYPERINSULINISM CENTER 

THANK YOU 
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