

Hyperinsulinism Status Report

Diva D. De León-Crutchlow, MD, MSCE Chief, Division of Endocrinology and Diabetes Director, Congenital Hyperinsulinism Center The Children's Hospital of Philadelphia

Definition and Diagnosis

Hypo-ketonemia Hypo-FFA-emia

glucagon

Hyper-glycemic response to

Definition and Diagnosis

- ➤ Most common cause of persistent hypoglycemia in children:
 - Rare disease ~ 1:20,000 50,000 in USA and Europe
 - **80** new cases in the US every year
- ➤ Clinical diagnosis:
 - High glucose requirement
 - Hyper-insulinemia 82% sensitivity; 100% specificity
 - Hypo-ketonemia 100% sensitivity and specificity
 - Hypo-FFA-emia 87% sensitivity; 100% specificity
 - Hyper-glycemic response to glucagon 89% sensitivity: 100% specificity
- ➤ Challenges and opportunities:
 - Atypical presentations late diagnosis/inappropriate treatment
 - Access to biochemical assays

Causes of persistent hypoglycemia in neonates

Definition and Diagnosis

- ➤ Molecular diagnosis:
 - 12+ causative genes identified
 - Next generation sequencing panels include 9-11 genes
 - Two-tier testing with rapid turn around for ABCC8/KCNJ11
 - Testing available for syndromic causes
- ➤ Challenges and opportunities:
 - Access to molecular testing (cost, availability)
 - Interpretation of results (variants of unknown significance)
 - Negative results: 64% diazoxide-responsive; 10% diazoxide unresponsive

Molecular causes of hyperinsulinism

Treatment

Goals of therapy

≻Immediate:

To promptly restore plasma glucose to normal range [>70 mg/dL(3.9 mmol/L)]

>Mid-term:

- To identify optimal treatment regimens according to type of hyperinsulinism
- To maintain normal plasma glucose concentrations while encouraging normal feeding/diet

≻Long-term:

- To prevent brain damage
- To promote normal life and development

Precision Medicine

➤Individualized treatment plan:

- According to genotype (genetic testing results)
- According to the phenotype (clinical manifestations)

≻Requires:

- Comprehensive investigations to understand all aspects of the condition
- Different treatment options one treatment modality may "not fit all"

➣Is it possible for HI?

- Yes for focal HI
- Sort of for non-focal HI

Treatment

- ➤ Challenges and opportunities
 - Diazoxide only FDA-approved drug to treat hyperinsulinism
 - 60% of cases are unresponsive
 - Not available in many areas of the world: ~ 60% of respondents to CHI global access survey
 - Ongoing monitoring
 - For side effects of therapy
 - Glycemic control:
 - √ Glucose meter vs. CGMS
 - ✓ Inpatient evaluations
 - Growth and development

CGMS for monitoring glycemic control in HI

- ≥ 14 children (age 15-67 m) with persistent hypoglycemia due to HI
 - Dexcom G5 for 2 weeks
- >Limitations:
 - High frequency of false positive lows
 - Helpful for children with glycemic variability, not helpful for children who are well controlled
 - Cost off-label, not covered by insurance

	POSITIVE PREDICTIVE VALUE	NEGATIVE PREDICTIVE VALUE
HYPOGLYCEMIA (<70 MG/DL)	50%	96%
HYPOGLYCEMIA (<54 MG/DL)	15%	99%

Treatment

- Challenges and opportunities
 - Development of new therapies:
 - Lack of longitudinal natural history data
 - Limited number of patients for clinical trials
 - Heterogeneity of patient population
 - Medical vulnerability of patient population
 - Complex path to approval

Outcomes

1954 1960's 1970's 1980's 1990's 2000's 2004 2010's 2019

Paris (1982-98): Philadelphia (1960-2008): 48% neurological and neurodevelopmental problems

Irreparable brain damage from severe hypoglycemia. McQuarrie. *Am J Dis Child.*

Australia (1972-98):

45% neurological damage

Israel (1975-97):

29% learning problems

Philadelphia (1963-98):

23% developmental disability

Germany (1982-98):

44% developmental disability

Philadelphia (1980-2000):

31% developmental delays

97% cure for focal HI CHOP HI Center

Germany (2008-2013): **47%** developmental disability

UK (2013):

39% developmental disability

Denmark (2013-2016): 47% developmental disability

Outcomes

- Neurodevelopmental deficits are common
 - 48% reported problems
 - Children with focal and transient disease equally affected
- Challenges and opportunities:
 - Identification and screening of infants at risk
 - Early diagnosis and treatment with close monitoring of glycemic control
 - Better treatment options

Prevalence of Reported Neurobehavioral Problems

	Individuals with	USA population
Type	HI (%) [16]	(%) [20–22]
Psychiatric/behavioral	21	13
Speech delay	18	8
Learning disability	16	8
Seizures	13	1
Physical disability	11	5
ADHD	10	7
Autism	2	0.5
Learning disability Seizures Physical disability ADHD	16 13 11 10	8 1 5 7

Research/Clinical Priorities

- ➤ Early diagnosis:
 - Novel biomarkers to make newborn screening a reality
- ➤ Precise diagnosis:
 - Improved access to molecular testing
 - Better tools for molecular testing and interpretation of results
- ➤ Personalized approach to treatment:
 - Natural history and longitudinal data --→ CHI Global Registry
 - Centers of Excellence: Specialized Center with Multidisciplinary Team
 - Treatment guidelines ---→ under development (PES/ESPE/SLEP/APPES)
 - Improved tools for monitoring glycemic control
 - New effective therapies -→several preclinical and clinical studies ongoing
 - Better access to medications

