



## **Table of Contents**

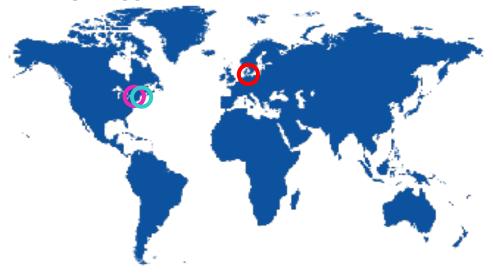
**Company Information** 

**Dasiglucagon Development Program** 

**Trial 17109** 

**Trial 17103** 

**Trial 17106** 






## Who Are We? And What Do We Do?

### **Global Organization**

- Founded in 1998 in Denmark
- R&D focused, biotechnology company
- Multiple approved assets worldwide



Copenhagen, Denmark

**Boston, MA** 

Marlborough, MA - now Mannkind

### **Peptide-based Therapies:**

#### **Modifying Peptides to Optimize Treatment**

Rational peptide design = create peptides that improve on the characteristics of naturally occurring hormones/proteins

- Structural optimization
- May confer one or more therapeutic advantages:
  - **1. Selectivity** for intended target
  - 2. Improved physical-chemical properties such as solubility and half-life
  - 3. Potency at low concentrations
  - **4. Favorable safety profile** in terms of side effects and drug interactions



## Our mission is to change lives with next generation peptide therapeutics











### **Proprietary peptide platform**

<sup>1</sup> Rescue market alone ~300m USD in 2020 (Source: Symphony); 2 SBS market alone expected to grow by 5.8% CAGR (Source: Research&Markets), bringing GLP-2s above 1 B USD by 2030 (based on Gattex 2020/2021sales ~600 mUSD); 3 Assuming continued growth rate of ~15% CAGR from current level of >1B USD (Source: EvaluatePharma), market exceeds 10B by 2035; 4 Current market for Crohn's disease alone ~13B USD and growing (Source: EvaluatePharma);

<sup>&</sup>lt;sup>5</sup> V-Go part of current diabetes management focus, but not relevant in T1 diabetes - long-term strategic fit will need to be assessed; <sup>2</sup> Licensed to Bohringer Ingelheim, <sup>3</sup> Licensed to Astra Zeneca



# Our pipeline addresses significant unmet medical needs across several diseases and provides near-term value triggers

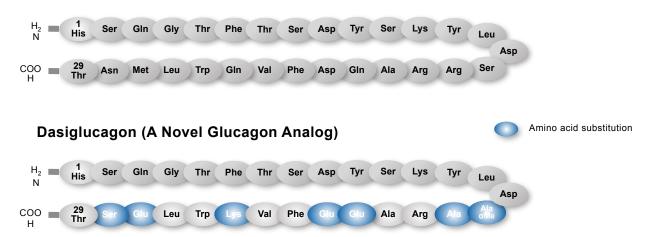
|                 | Product Candidate*                                |                          | Preclinical                | Phase 1   | Phase 2 | Phase 3 | Registration |
|-----------------|---------------------------------------------------|--------------------------|----------------------------|-----------|---------|---------|--------------|
| Type 1 diabetes | Dasiglucagon Bi-Hormonal Artificial Pancreas Pump |                          | Type 1 Diabetes management |           |         |         |              |
|                 | Dasiglucagon Low-Dose Pen                         |                          | T1D exercise-indu          | iced hypo |         |         |              |
| Rare diseases   | Dasiglucagon S.C. Continuous Infusion             |                          | Congenital hyperi          | nsulinism |         |         |              |
|                 | Glepaglutide GLP-2 Analog                         |                          | Short Bowel Synd           | rome      |         |         |              |
|                 | Dapiglutide GLP-1/GLP-2 Dual Agonist              |                          | SBS+                       |           |         |         |              |
| >               | BI 456906 GLP-1/GLU Dual Agonist¹                 | Boehringer<br>Ingellieim | Obesity, NASH an           | d T2D     |         |         |              |
| Obesity         | ZP 8396 Amylin Analog                             | ~                        | Obesity                    |           |         |         |              |
| °               | ZP 6590 GIP Agonist                               |                          | Obesity                    |           |         |         |              |
| Inflammation    | ZP 9830 Kv1.3 Ion Channel Blocker                 |                          | IBD+                       |           |         |         |              |
|                 | ZP 10000 a4β7 Integrin Inhibitor                  |                          | IBD                        |           |         |         |              |
|                 |                                                   | EXION'                   | Undiscl.                   |           |         |         |              |

<sup>\*</sup> investigational compounds whose safety and efficacy have not been evaluated or approved by the FDA or any other regulatory authority

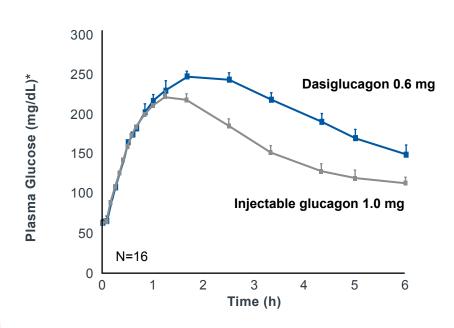
17 Sep 2022

<sup>1</sup> Licensed to Boehringer Ingelheim: EUR 345 million outstanding potential development, regulatory and commercial milestones + high single to low double digit % royalties on global sales

<sup>&</sup>lt;sup>2</sup> Licensed to Alexion: USD 610 million potential development, regulatory and commercial milestones + high single to low double digits % royalties on net sales




# Dasiglucagon Development Program

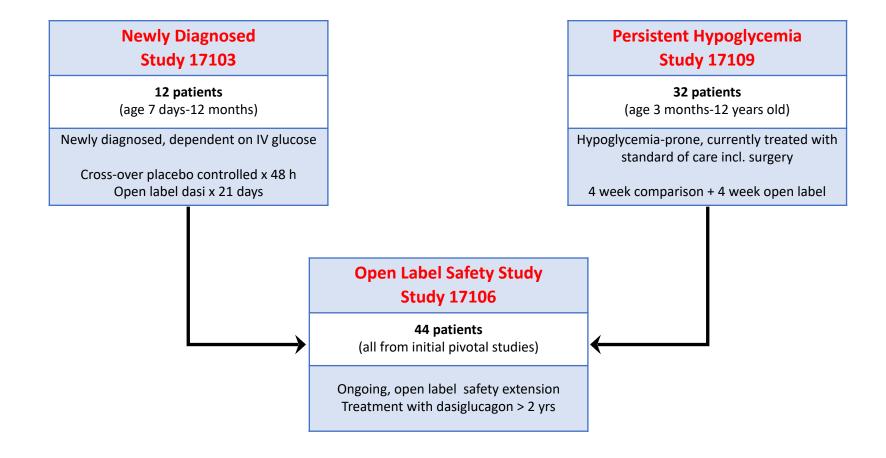



## **Dasiglucagon: A Novel Glucagon Analog**

#### **Native Human Glucagon**



- · Native human glucagon is effective as an anti-hypoglycemic agent,
  - Lacks stability, fibiliates in aqueous solutions; limits clinical utility
- Dasiglucagon = glucagon analog with 7 amino acid substitutions improving
  - Improves aqueous solubility and enhanced physical stability
  - Suitable for longer term continuous or intermittent infusion




Hovelmann et al. Diabetes Care. 2018;41:531-537.

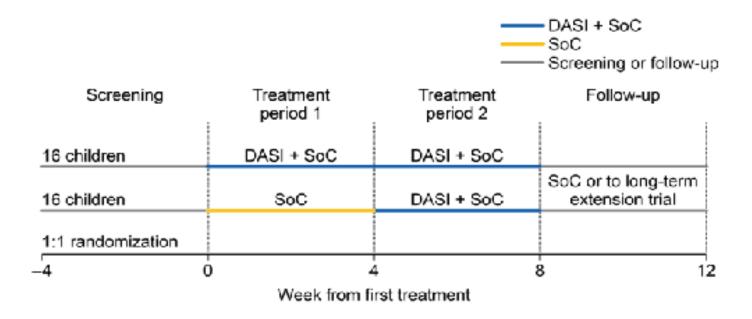
17 Sep 2022

## Dasiglucagon for the Management of CHI:

**Clinical Trials** 



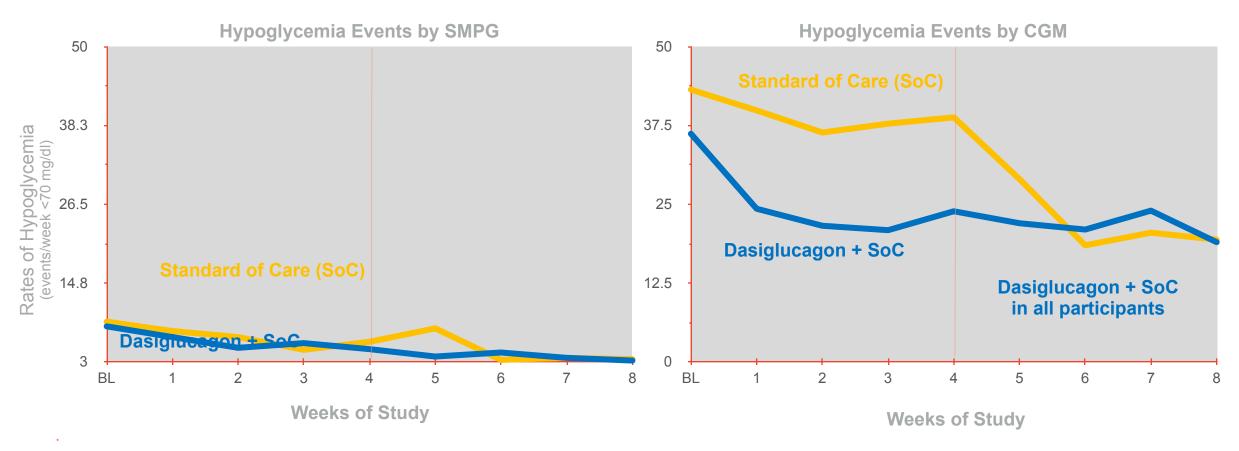
Clinical Trials Register (EU)- Study 17103 (Jan 2022) ClinicalTrials.gov- Study 17106 (Jan 2022) ClinicalTrials.gov-Study 17109 (Jan 2022) Clinical Trials Register (EU)-Study 17109 (Jan 2022) ClinicalTrials.gov-Study 17109 (Jan 2022) https://clinicaltrialsregister.eu/ctr-search/trial/2017-004545-24/DE
https://clinicaltrials.gov/ct2/show/NCT03941236?term=NCT03941236&draw=2&rank=1
https://clinicaltrials.gov/ct2/show/NCT03777176
https://clinicaltrialsregister.eu/ctr-search/trial/2017-004547-21/DE
https://clinicaltrials.gov/ct2/show/NCT04172441?term=NCT04172441&draw=2&rank=1




## **Trial 17109**



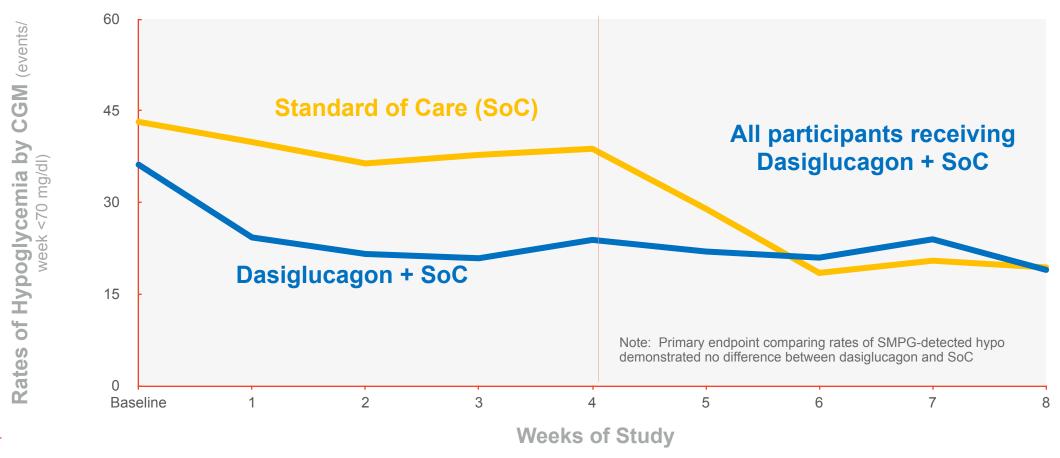
## **Study 109 – Trial Design**


- Two-period, open-label study to assess safety and efficacy of DASI when added to SoC in children with CHI and persistent hypoglycemia
  - 32 children (mean age 4.3 [0.6–10.9] years) randomized to continued SoC vs SoC+DASI
  - All patients were treated with DASI during Period 2
- Primary efficacy measure: hypoglycemia episode rate, defined as average weekly number of hypoglycemic episodes (< 70 mg/dL or 3.9 mmol/L) during Weeks 2-4, as detected by SMPG





# Phase 3 trial in children with CHI having multiple hypoglycemic events despite maximum standard of care


Dasiglucagon (plus SoC) treatment reduced CGM-detected hypoglycemia when compared with SoC treatment alone. There was no significant difference in rates of SMPG-detected hypo





# Phase 3 trial in children with CHI having multiple hypoglycemic events despite maximum standard of care Dasiglucagon (plus SoC) treatment reduced rates of CGM-detected hypoglycemia

when compared with SoC treatment alone





## Post-hoc analyses, CGM detected hypoglycemia

| Endpoint                                                                                                                                                                                           | Expressed as                                                          | Posthoc Analysis              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|
| CGM-detected hypoglycemia episodes during<br>Treatment Period 1 ( 0 mg/dL)</td <td>Event rate ratio (95% CI of event rate ratio), <math>P</math> value</td> <td>0 57 (0 39; 0 83), P = 0 0029</td> | Event rate ratio (95% CI of event rate ratio), $P$ value              | 0 57 (0 39; 0 83), P = 0 0029 |
| CGM-detected clinically significant<br>hypoglycemia episodes during Treatment<br>Period 1 (<54 mg/dL)                                                                                              | Event rate ratio (95% CI of event rate ratio), $P$ value              | 0.56 (0.37; 0.86), P = 0.0075 |
| CGM Percent time in hypoglycemia<br><70 mg/dL during Treatment Period 1                                                                                                                            | Estimate of LS means ratio (95% CI of LS means ratio), P value        | 0.53 (0.36; 0.79), P = 0.0017 |
| CGM Percent time in chinically significant<br>hypoglycemia <54 mg/dL during Treatment<br>Period 1                                                                                                  | Estimate of LS means ratio (95% CI of LS means ratio), <i>P</i> value | 0.49 (0.30; 0.82), P = 0.0061 |

Source: Section 14.5, Table 14.5.1, Table 14.5.2, Table 14.5.3, Table 14.5.12.2

Abbreviations: CI = confidence interval; CGM = continuous glucose monitoring; LS = least squares



## **Safety Summary**

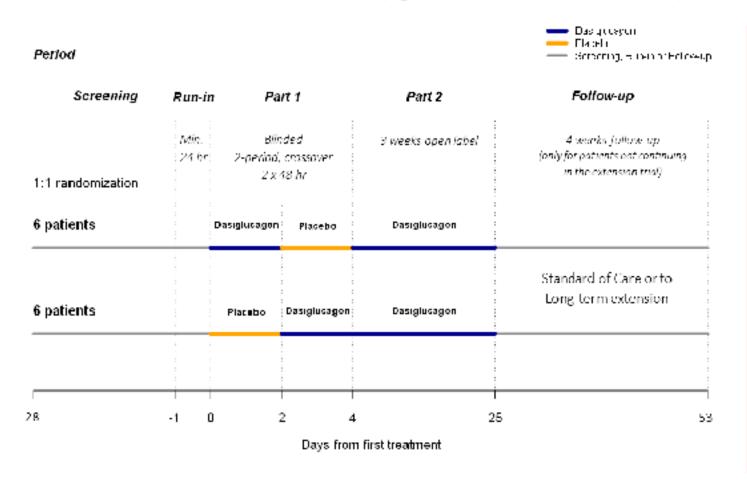
- Overall, dasiglucagon was assessed as safe and well-tolerated
- During controlled Part 1, most common AEs reported in dasiglucagon arm were
  - Infections and infestations
  - Skin and subcutaneous disorders
  - Gastrointestinal disorders
- No clinically meaningful trends in remaining safety parameters (such as laboratory parameters and vital signs)

17 Sep 2022 14



# Phase 3 trial in children and adolescents with CHI treated with standard of care therapies, conclusion Dasiglucagon (plus SoC) treatment reduced rates of CGM-detected hypoglycemia when compared with SoC treatment alone

- Rates of hypoglycemia as measured by SMPG declined over time and to a similar degree with both DASI + SoC when compared with SoC alone (Primary Endpoint)
- There was a clinically meaningful reduction in measures of hypoglycemia, as assessed by blinded continuous glucose monitoring with DASI + SoC when compared with SoC alone (Exploratory Endpoint)
- DASI treatment was generally considered safe and well tolerated in the study
- Higher rates of treatment emergent adverse events (TEAEs) were seen with DASI + SoC (87.5%) than with SoC alone (50%)
- The majority of TEAEs were reported to be mild in severity
- One patient discontinued in Period 2 due to persistent hyperglycemia despite reduced DASI dose






## **Trial 17103**



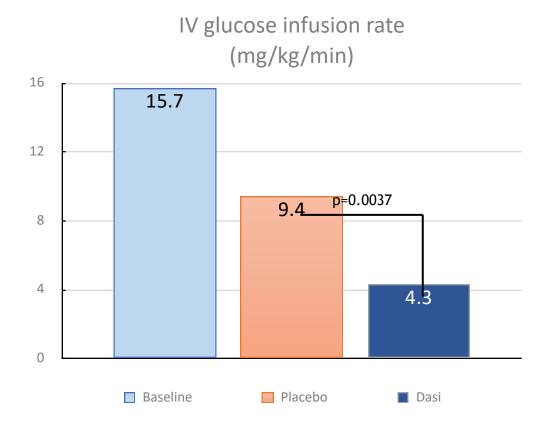
## Trial 103 Randomized, double-blind, placebo-controlled, crossover



#### **Primary endpoint**

Part 1 (Day 1 to 4)

 Mean IV GIR in the last 12 hours of each treatment period during Part 1 (dasiglucagon or placebo administration)

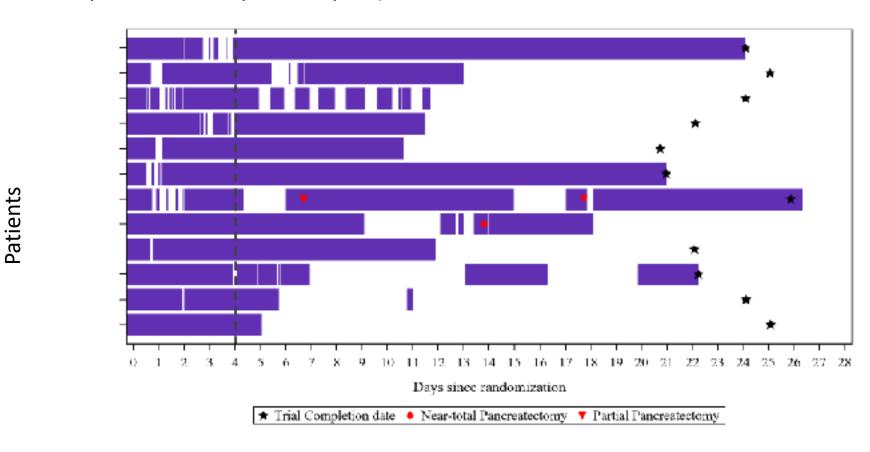

#### Key secondary efficacy endpoints

Part 1 (Day 1 to 4, for each 48-hour treatment period)

1. Total amount of carbohydrates administered (via IV infusion, nasogastric tube, gastrostomy, or oral route) per day.

17 Sep 2022

# Dasiglucagon in Infants and Newborns with CHI Primary Endpoint




## Significant reduction in mean IV glucose infusion in final 12 hours of treatment

- •55% reduction in GIR dasiglucagon vs placebo
- •10/12 individual subjects with reduction in GIR
- •9/12 with GIR < 10mg/kg/min on dasiglucagon
- •6/12 with GIR < 10mg/kg/min on placebo

## IV Glucose Infusion Rate (GIR)

(Patient and Day-Post Hoc Analysis-Safety Set)



- 10 patients weaned off IV glucose for at least 12 hours
- 7 patients without pancreatectomy were off IV glucose at trial completion

## Hypoglycemic Events by CGM and SMPG (< 3.9 mmol/L, <70mg/dl)

|        | % time by CGM < 3.9 mmol/L (70 mg/dl)  Median | CGM episodes < 3.9 mmol/L (70 mg/dl)  Median | SMPG episodes < 3.9 mmol/L (70 mg/dl)  Median |
|--------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|
| Week 1 | 7.0                                           | 22                                           | 8.5                                           |
| Week 2 | 7.3                                           | 26                                           | 6.0                                           |
| Week 3 | 5.7                                           | 19                                           | 3.8                                           |

- Maintained CGM time in range between 88-91%
- No change in hyperglycemia
   CGM > 10 mmol/L (180 mg/dl)

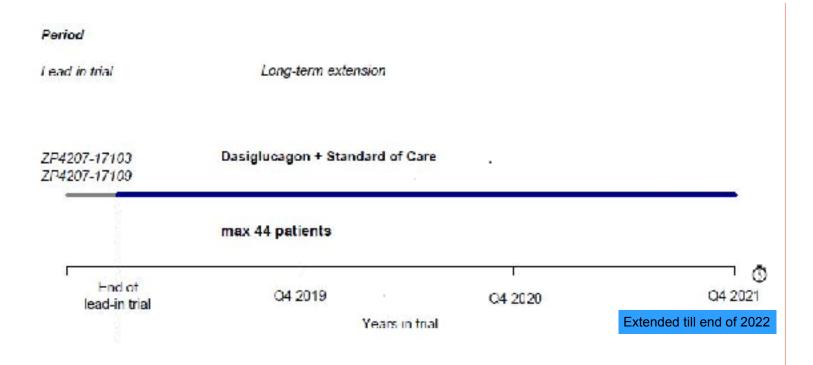


21

## Phase 3 trial in hospitalized neonates/infants with CHI: Significant reduction in IV glucose infusion rate

### Intravenous glucose (IV) requirements reduced by 55% compared to placebo

- Primary endpoint reduction in IV glucose requirements over final 12 hours of treatment
- 55% reduction in GIR with dasiglucagon treatment vs placebo (blinded cross-over study)
- Dasiglucagon treatment was assessed to be well-tolerated with no new safety findings reported
- 11 out of 12 patients continued into the long-term safety extension trial (Study 17106).
- Full data set accepted for presentation at the European Society for Pediatric Endocrinology (September 2022)


17 Sep 2022



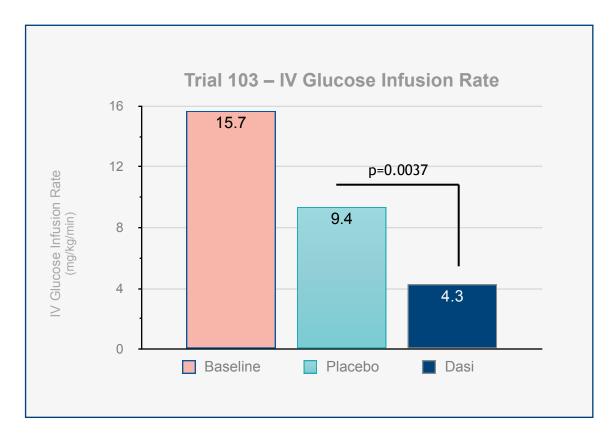
## **Trial 17106**

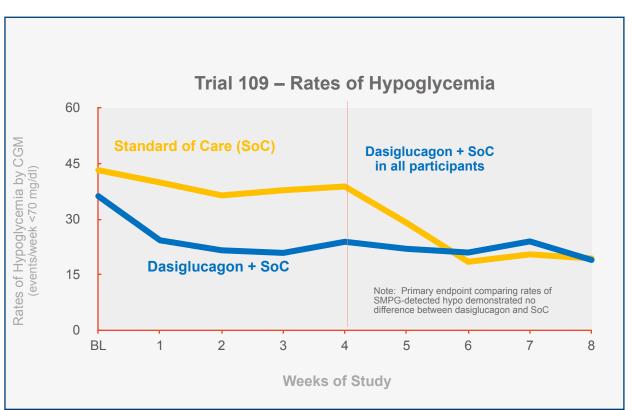


## Trial 106 Open-label, long-term safety and efficacy extension



#### **Primary endpoint**


Adverse events


#### **Key secondary efficacy endpoints**

- Total amount of gastric carbohydrates administered (nasogastric [NG] tube or gastrostomy) to treat hypoglycemia
- Time to removal of NG tube or gastrostomy
- Time to pancreatic surgery (sub-total or total pancreatectomy)
- Continuous glucose monitoring (CGM) percent time ≤ 70 mg/dL (3.9 mmol/L)
- Rate of CGM detected hypoglycemia episodes <70 mg/dL (3.9 mmol/L) for 15 minutes or more
- Rate of CGM detected hypoglycemia episodes <54 mg/dL (3.9 mmol/L) for 15 minutes or more



## Phase 3 program of dasiglucagon in CHI: Results of Pivotal Clinical Trials





- Dasiglucagon therapy achieved a 55% reduction in glucose infusion rate
- Reduced total carbohydrates by ~22%
- 7 of 12 participants weaned off IV glucose by end of study

- Dasiglucagon therapy achieved a 55% reduction in glucose infusion rate
- Reduced total carbohydrates by ~22%
- 7 of 12 participants weaned off IV glucose by end of study



## Thank you!