

Current Medical Treatment Options

The Children's Flospital of Philadelph

Diva D. De León-Crutchlow, MD, MSCE Chief, Division of Endocrinology and Diabetes Director, Congenital Hyperinsulinism Center The Children's Hospital of Philadelphia

Goals of therapy in hyperinsulinism

Immediate:

To promptly restore plasma glucose to normal range (>70 mg/dL)

➤Mid-term:

- To identify optimal treatment regimens according to type of hyperinsulinism
- To maintain normal plasma glucose concentrations while encouraging normal feeding/diet

Long-term:

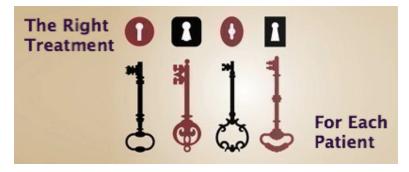
- To prevent brain damage
- To promote normal life and development

Precision Medicine

Individualized treatment plan:

- According to genotype (genetic testing results)
- According to the phenotype (clinical manifestations)

Requires:


- Comprehensive investigations to understand all aspects of the condition
- Different treatment options one treatment modality may "not fit all"

➤Is it possible for HI?

- Yes for focal HI
- Sort of for non-focal HI

Diazoxide

- First-line of therapy for hyperinsulinism
- ≻ Dose:
 - 5-15 mg/kg/day by mouth divided bid
 - Only suspension available in US capsules in other countries
- > Types of HI:
 - Perinatal stress-induced HI, HIHA, HNF1A, HNF4A, dominant K_{ATP}, genetic negative, some GCK HI
- Side effects:
 - Edema (18%)
 - Pulmonary hypertension (2.1%-4.8%)
 - Hypertrichosis (52%)
 - Neutropenia (15.6%)
 - Thrombocytopenia (4.7%)
 - Hyperuricemia (5%)

Herrerra, et al. *J Clin Endocrinol Metab*, 2018 Thornton, et al. Horm Res Paediatr, 2019 Welters A, et al. *Orphanet J Rare Dis*, 2015; 10:150

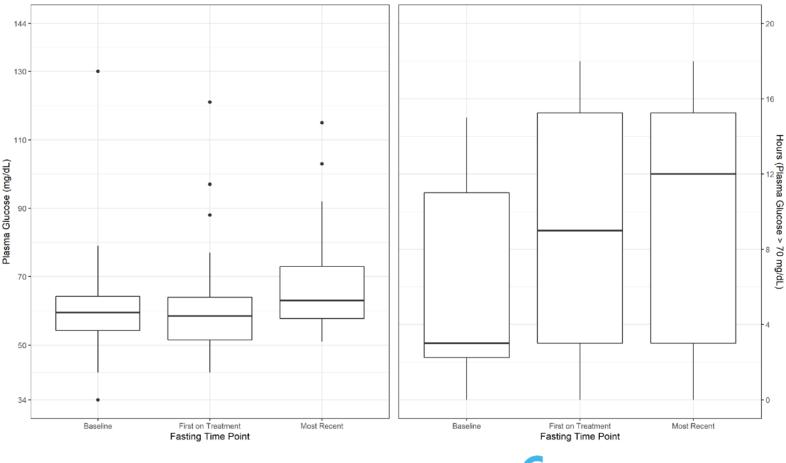
Diazoxide

>Screening for side effects:

- Echocardiogram:
 - \sim 1 week after initiation
- Laboratory studies:
 - Blood counts, chemistry, uric acid

Octreotide

- > Dosing: 10-20 mcg/kg/day by subcutaneous injection
 - ✓ Every 6 hrs
 - ✓ Given 2 times a day in combination with continuous intragastric dextrose or continuous enteral feedings
 - ✓ Continuous subcutaneous administration through an insulin pump
- > Effectiveness:
 - Tachyphylaxis common
- > Side effects:
 - ✓ Suppression of growth and thyroid function
 - ✓ GI side effects
 - ✓ Gall bladder pathology (32%*)
 - ✓ Transient elevation of LFTs (46.4%*)
 - ✓ Thrombosis (2%***)
 - ✓ Necrotizing enterocolitis (1%***)



Cuff, Lord, Stewart, De Leon. J Clin Endocrinol Metab, 2022

Use of *lanreotide* in the treatment of HI

>Lanreotide

- Somatostatin analogue
- Deep subcutaneous injection every 28 days
- Dose: 30-90 mg
- >Our experience:
 - 54 children and adults with HI
 - Median age: 4.6 years (1.5-28.5)
 - Genetics: 63% K_{ATP}HI
 - Response: 42% able to discontinue other treatments and managed on lanreotide alone
 - Side effects: subcutaneous nodules (26%), gallstones (11%)

Children's Hospital of Philadelphia

SIDOL

Congenital Hyperinsulinism Center

Somatostatin Analogues

>Screening for side effects:

- Growth and weight gain
 - Every 6 months
- Gallbladder ultrasound:
 - Every 6 months
- Laboratory studies:
 - Every 6 months
 - Liver function tests, growth factors, thyroid function tests, fat-soluble vitamin levels

Herrerra, et al. *J Clin Endocrinol Metab*, 2018 Welters A, et al. *Orphanet J Rare Dis*, 2015; 10:150 Demirbilek, et al. J Clin Endocrinol Metab, 2014 McMahon, et al. *Pharmacoepidemiol Drug Saf*, 2017 Adzick, *J Ped Surg*, 2019

Continuous Intragastric Dextrose

➤Dosing:

✓ D10-20%
✓ Not more than 10 mg/kg/min
✓ Continuously by gastrostomy

>Side effects:

✓ Vomiting 33%
✓ Diarrhea 4.8%
✓ Tube/pump malfunction 57%

Table 3. Cohort characteristics b	y month of dextrose exposure
-----------------------------------	------------------------------

	Approximate month of follow-up		
	0	6	12
Growth evaluation			
Subjects, <i>n</i>	29	26	23
Mean weight Z-score (SD)	+0.48(1.71)	+0.78 (1.43)	+0.96(1.53)
Mean length Z-score (SD)	-0.36 (1.62)	-0.10 (1.23)	-0.08 (1.28)
Mean WFL-Z (SD)	+1.14(1.53)	+1.13(1.50)	+1.30(1.40)
Mean BMI-Z (SD)	+0.96(1.66)	+1.12(1.50)	+1.35(1.31)
Overweight by WFL- $Z > +1.04$ (95% CI)	48% (30-67%)	65% (44-82%)	52% (31-73%)
Overweight by BMI-Z > +1.04 (95% CI)	48% (30-67%)	65% (44-82%)	52% (31–73%)
Secondary outcomes			
Subjects, n	32	28	25
Enteral nutrition (95% CI)	72% (53-85%)	58% (39-75%)	39% (22-59%)
Feeding difficulties (95% CI)	31% (17-50%)	36% (20-55%)	36% (20-56%)

WFL-Z, weight-for-length Z-score; BMI-Z, body mass index Z-score.

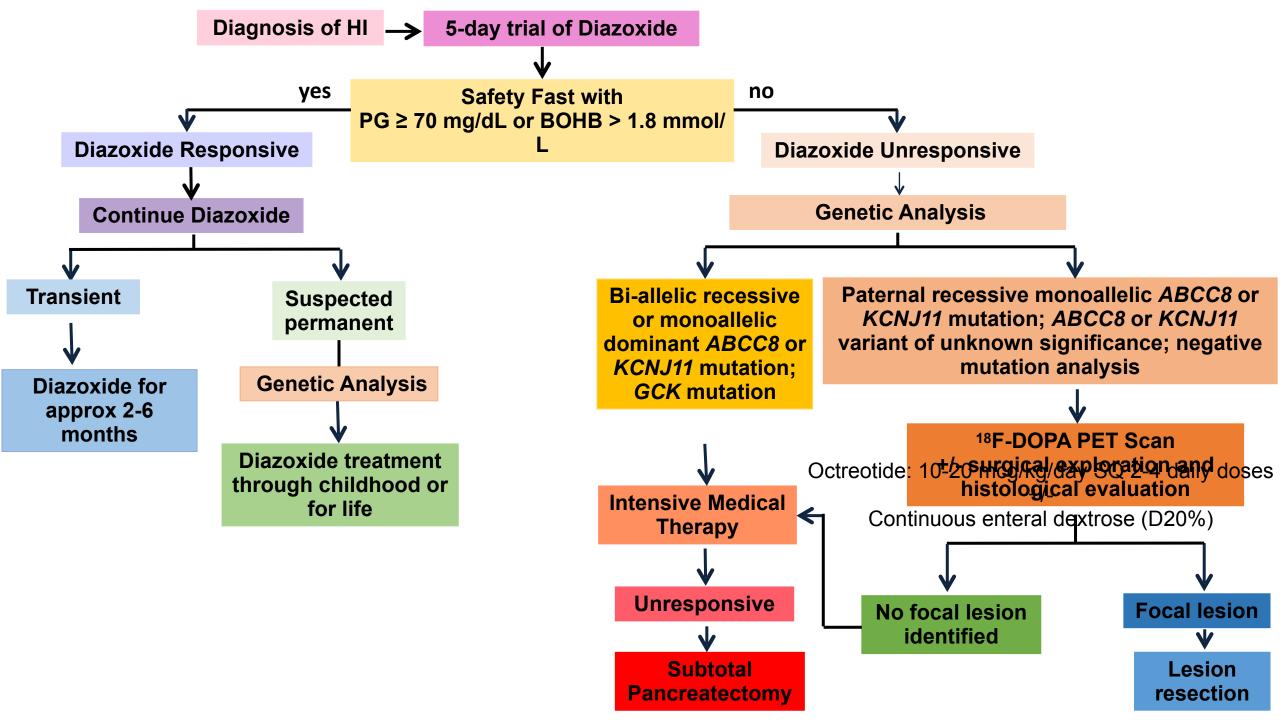
How do we determine treatment responsiveness?

≻Fasting test:

- Duration depending on the age of the child:
 - 12-18 hrs
- Monitor:
 - Glucose and ketone levels
- Effectiveness:
 - Able to fast with plasma glucoses > 70 mg/dL
 - Ketones increase as glucose decreases 50-60 mg/dL

Importance of determining treatment responsiveness

>For phenotypic characterization:


 Identification of infants that need additional evaluation for the possibility of focal disease

> For adequate glycemic control:

 Goal is to maintain euglycemia while receiving an age-appropriate feeding regimen, allowing for periods of fasting at night

Yau and Stanley. Diazoxide responsive forms of congenital hyperinsulinism. In De Leon & Stanley, Congenital Hyperinsulinism, 2018

Follow-up

- Ongoing monitoring
 - For side effects of therapy
 - Glycemic control:
 - ✓ Glucose meter vs. CGMS
 - ✓ Inpatient evaluations: safety fast
 - Growth and development
- Discontinuation of treatment
 - Depends on type of hyperinsulinism
 - Normal plasma glucoses on minimal treatment support
 - When resolution is suspected
 - ✓ Transient hyperinsulinism
 - ✓ Focal cases
 - Importance of demonstrating resolution
 - ✓ Fasting test

Congenital Hyperinsulinism Center

Take home points

The management of infants and children with hyperinsulinism requires a stepwise, comprehensive and multidisciplinary approach

- Define genotype and phenotype (including diazoxide-responsiveness)
- Determine best treatment path
- Assessment of effectiveness of treatment
- Close monitoring for side effects, complications, glycemic control

