NEURODEVELOPMENTAL OUTCOMES IN HI: CHOP DATA

Katherine Lord, MD Medical Director of Inpatient Endocrinology Associate Professor of Pediatrics

HYPOGLYCEMIA AND THE BRAIN

- Hypoglycemia can damage cells in the brain
- Children with HI are at risk of neurological complications
 - Developmental delays
 - Learning disabilities
 - Epilepsy

BRAIN DEVELOPMENT AND GLUCOSE NEEDS

EFFECTS OF HYPOGLYCEMIA ON DEVELOPMENTAL OUTCOMES IN CHILDREN WITH CONGENITAL HYPERINSULINISM CHOP 1980-2000

- 68 subjects
 - 35 who had pancreatectomy
 - 26 on medical treatment
 - 7 with transient HI, which they had outgrown
- History of Hypoglycemia Questionnaire
- Developmental Testing: Scales of Independent Behavior Revised

Steinkrauss, Lipman, Hendell, Gerdes, Thornton, Stanley, J Pediatr Nurs, 2005

DEVELOPMENTAL OUTCOMES

	Average-Above Average (%)	Low-Low Average (%)	Very Low (%)
Overall	69	15	16
Surgical	68	9	23
Medical	73	23	4
Transient	57	14	29

LONG-TERM OUTCOMES IN INDIVIDUALS WITH SURGICALLY-TREATED HYPERINSULINISM CHOP 1960-2008

- 121 subjects who underwent pancreatectomy for HI
 - Prevalence of diabetes and neurological deficits
- Parent interview/questionnaire
- Developmental testing
 - Adaptive Behavior Assessment System (ABAS II)
 - Child Behavior Checklist (CBCL)

Lord, Radcliffe, Gallagher, Adzick, Stanley, De León, JCEM, 2015

RESULTS OF DEVELOPMENTAL TESTS

Table 4. Neurobehavioral Measures			
ABAS-II (n = 69) ^a	$Mean \pm SD$	% < 1 SD	% < <u>2</u> SD
GAC score	96 ± 25	27.5 ^d	18.8 ^e
Conceptual composite score	98 ± 22	21.2	11.8 ^e
Social composite score	100 ± 21	22.1	14.7 ^e
Practical composite score	92 ± 25	30.9°	16.2°
$CBCL (n = 62)^{b}$		% > 1 SD	% > 2 SD
TP score	49 ± 16	16.1	8.1 ^d
Internalizing problems	49 ± 13	16.1	9.7°
Externalizing problems	47 ± 11	11.5	6.5°

Subjects scoring low on testing = 27%

PARENT-REPORTED NEUROBEHAVIORAL PROBLEMS

Туре	HI	US
	Patients	Population
Psychiatric/behavioral	21%	13%
Speech delay	18%	8%
Learning disability	16%	8%
Seizures	13%	1%
Physical disability	11%	5%
ADHD	10%	7%
Autism	2%	0.5%
Any Problem	48%	
	Q	Children's Hospita

RISK FACTORS FOR NEURODEVELOPMENTAL ISSUES

- Factors not associated with developmental issues
 - Gender
 - Age at presentation
 - History of seizures at presentation
 - Age at surgery
 - Extent pancreatectomy
 - HI genetics

- Children with diffuse HI more likely to have lower scores on developmental testing than those with focal HI
- More research is needed

CONCLUSIONS

• Children with HI are at risk of developmental issues

- How to improve developmental outcomes
 - Early diagnosis and appropriate treatment with goal of maintaining normal blood glucoses
 - Developmental screening for all patients diagnosed with HI
 - Initiation of therapy if delays are identified

NEUROPSYCHOLOGICAL ASSESSMENT AND EVALUATION

Sophie Foss, PhD

Department of Child and Adolescent Psychiatry and Behavioral Sciences Congenital Hyperinsulinism Center Division of Pediatric General, Thoracic & Fetal Surgery

WHAT IS A NEUROPSYCHOLOGICAL EVALUATION?

- Comprehensive assessment using objective, standardized tests and procedures that compare performance of a child to a representative sample of same age peers
- Use brain-behavior relationships to explain functioning
- Typical neurocognitive domains assessed:
 - Intellectual abilities
 - Speech and language skills
 - Attentional regulation
 - Executive functions (planning, organization)
 - Memory and learning
 - Visual-perceptual/visual-spatial functioning
 - Visual-motor & fine motor skills
 - Academic achievement
 - Adaptive functioning
 - Behavioral and emotional status

WHAT ARE THE GOALS OF NEUROPSYCHOLOGICAL EVALUATION?

- Provide an explanation for difficulties a child might be experiencing
 - Writing difficulties: fine motor weaknesses, visual motor integration impairments, inattention, trouble generating ideas or organizing thoughts
- Clarify what is wrong (e.g., attention difficulties versus memory difficulties)
- Provide or confirm a diagnosis (e.g., learning disability)
- Identify cognitive strengths and weaknesses
- Document improvement or deterioration in conditions
- Provide recommendations to facilitate patient care and intervention planning

- Comprehensive
- Process focused
- Brain-behavior oriented

COMPONENTS OF NEUROPSYCHOLOGICAL EVALUATION

- Record Review medical & school records, past assessments
- Interview with caregivers birth, developmental, family, school & psychosocial history
- Testing (4-7 hours; 1-2 sessions)
 - Behavioral observation
 - Examiner administered tasks
 - Computerized tasks
 - Parent and teacher questionnaires
- Feedback session, written report

WHAT HAPPENS NEXT?

- Neuropsychological report
 - Referral question
 - Relevant history
 - Review of behavioral observations and test results
 - Summary
 - Diagnostic impressions
 - Description of the individual's neurobehavioral/ neurocognitive profile
 - Strengths and weaknesses
 - Risk and protective factors
 - Recommendations

WHAT KIND OF RECOMMENDATIONS?

- Services at school
 - Individualized Education Program
 - Involves requesting a multidisciplinary evaluation from the school
 - Covered by Individuals with Disabilities Education Act (IDEA) 2004
 - 504 Plan
 - Covered by Section 504 of the Rehabilitation Act of 1973
 - School placement: classroom type, level of services, 1:1
 aide
 - Special instruction in a particular subject
- Modification of school instruction
 - Extended time on assignments/tests
 - Reduction in homework volume, writing requirements
 - Organizational help

WHAT KIND OF RECOMMENDATIONS?

- Related Services- OT, PT, SL, hearing, vision services
- Therapy- school-based, private, parent training, social skills groups
- Psychiatric or neurological consult
- Resources- support groups, agencies, vocational rehab, specific reading materials

QUESTIONS?

