

Screening babies with Hypoglycaemia – finding the right needles in the right haystacks.

Helen Liley- Mater Research, Faculty of Medicine, The University of Queensland

Births in Australia - ~300,000/year

Trying to find congenital hyperinsulinism

300,000 births

~70,000 - risk factors for neonatal hypoglycaemia

- 27,000 low birth weight for gestation (9.1%)
- 29,000 high birth weight for gestation (9.7%)
- 48,000 some form of maternal diabetes in pregnancy
- 24,000 preterm (8.2%)
- 30,000 admitted to ICN or SCN (17%)

12-24 babies per year with CH

Maternal glucose control in normal pregnancy

- ☐ First half of pregnancy maternal basal insulin secretion relatively normal
- Second half of pregnancy
 - Insulin secretion exaggerated (3x production in non-pregnant state)
 - Insulin antagonised by human placental lactogen, oestrogen, progesterone
 - Insulin clearance may increase, binding is normal
 - Insulin sensitivity 40-60% of non pregnant state.
- ☐ Effect is to
 - Meet glucose and nitrogen needs of the growing fetus
 - Protect the fetus against reduced substrate delivery during maternal fasting
 - Maternal blood glucose levels sustained, or, when maternal hypoglycaemia eventually ensues.....
 - Maternal ketogenesis promoted (fetal brain can use ketones from 10-12 weeks).

Neonatal glucose balance – why is there a problem?

In the fetus

- glucose from the mother at ~ 5 mg/kg/min
- amino acids from mother and lactate from placenta are also important sources of energy
- Fetus undertakes little or no gluconeogenesis
- Insulin and glucose stimulate accumulation of glycogen and fat to support extra-uterine life (high insulin/glucagon ratio)
- Near term glucocorticoids contribute to glycogen deposition

In the newborn

- Rapid switch needed from continuous glucose supply via the placenta to intermittent nutrient supply via the gut
- Brain needs ~ 3.7 mg/kg/min glucose continuously

Transition – abrupt changes

Fetus

- Continuous glucose supply via placenta
- High carbohydrate, low fat diet
- Two systems required for success:
 - A functioning placenta
 - A functioning fetal pancreas that can make insulin

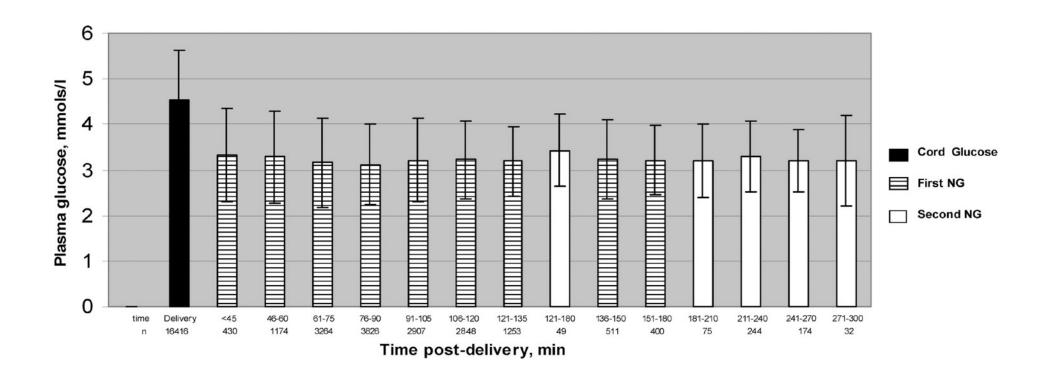
Newborn

- Intermittent supply via the gut
- High fat, low carbohydrate diet
- Seven systems required for success:
 - Successful feeding
 - Liver that can break down glycogen
 - Liver that can make glucose from other molecules (lactate, alanine, glutamine)
 - Adipose tissue lipolysis
 - Fatty acid oxidation and hepatic ketogenesis
 - Normally functioning fetal pancreas (can switch insulin production on and off)
 - Hormonal regulation of these systems

Normal physiology

- First hours of postnatal life transition from continuous glucose across the placenta, to intermittent supply from milk feeds
- Insulin falls and catecholamines and glucagon are released
- Essential enzymes for production of glucose from glycogen, body fat ketones switched on (unless inhibited by persistent insulin)
- Stimulation of appetite and promotion of fat metabolism from fat stores and milk feeds

[Footer]


- Various forms of maternal diabetes: Maternal hyperglycaemia -> fetal hyperglycaemia -> fetal islet cell hyperplasia -> neonatal hypoglycaemia (Pedersen hypothesis – 1920s)
- 2. Delay in normal perinatal transition
- 3. Low glycogen stores plus delay in feeding
- 4. Inborn errors of metabolism
- 5. Congenital endocrine disorders:
 - Persistent hyperinsulinaemic disorders
 - Hypothalamic or hypopituitary conditions
 - Adrenal conditions
- 6. Increased metabolic rate (usually stress mechanisms compensate)

Neonatal blood sugar levels

- □ BGL is low in the first six hours of life.
- □ Lack of international consensus about the normal range for prefeed plasma glucose in the normal healthy baby during this time period.
- ☐ The blood glucose usually
 - falls in the first two to four hours of life then,
 - by four to six hours of age stabilises at 2.5–4.4 mmol/L (may be up to 6.2 mmol/L)
 - Over subsequent days the mean BGL rises slowly to concentrations seen in older children and is generally acceptable if >3 mmol/L by 3rd day, 3.5 mmol/L by 4th day without any treatment in place

Temporal patterns of cord plasma glucose and neonatal plasma glucose (NG) concentrations Figure shows mean ± SD.

Boyd E. Metzger et al. Pediatrics 2010;126:e1545-e1552

Glucose Profiles in Healthy Term Infants in the First 5 Days: The Glucose in Well Babies (GLOW) Study J Pediatr. 2020 Aug;223:34-41

Futatani T, Ina S, Shimao A, Higashiyama H, Fujita S, Igarashi N, Hatasaki K. Exclusive breast-feeding and postnatal changes in blood sodium, ketone, and glucose levels. Pediatr Int. 2019;61(5):471-474

Queensland Neonatal Hypoglycaemia Guidelines

Queensland Clinical Guidelines

Translating evidence into best clinical practice

Maternity and Neonatal Clinical Guideline

Hypoglycaemia-newborn

- ☐ Updated September 2019
- ☐ Update commenced 2023
- ☐ Clinical leads Helen Liley, Karen Hose
- ☐ Large working party, specific expert advice from
 - Professors Jane Harding and Louise Conwell

QH Guidelines update

- ☐ Encouragement to avoid mother-infant separation and interruption of breast feeding/breast milk feeding where possible
 - Avoid hypothermia/cold stress
 - Early feeding
 - Glucogel emphasis that this is to improve the quality of the immediately subsequent feed, not to "treat" the hypoglycaemia
- ☐ If above measures insufficient, discussion with mother about potential advantages of complementary formula feeds vs IV therapy
 - Brief exposure to intragastric formula feeds in hospital low risk of affecting:
 - Establishment of breast feeding
 - Gut microbiome

QH Guidelines update

- □ Description of mechanisms of hypoglycaemia in the newborn one or more of
 - Increased levels of insulin
 - Increased glucose utilisation
 - Inadequate glucose supply
 - Inadequate body stores (glycogen, fat)
 - Decreased levels of counter-regulatory hormones (e.g., growth hormones, cortisol, adrenergic hormones)
 - Disorders of glycogen metabolism (glycogenolysis)
 - Disorders of glucose production (gluconeogenesis)
 - Congenital anomalies, or unknown or mixed causes

QH Guidelines update - continued

- Maternal risk factors
 - Maternal medications including beta blockers, betamethasone
 - Maternal diabetes
 - Family history of genetic conditions
 - Intrapartum IV glucose (>20 g/hour e.g., Hartmann's at >400 mL/h or glucose 10% >200 mL/h)
 - Pre-eclampsia
- ☐ Neonatal risk factors for the conditions in the previous slide
- ☐ Guidelines for which babies should have screening and definition of how and when to screen

fmater research

- ☐ Try to avoid complete cessation of feeds except when essential
- ☐ Maintain awareness of the Glucose Infusion Rate

Glucose mg/kg/minute				
mL/kg/day				
%	60	80	100	120
10%	4.2	5.6	6.9	8.3
12%	5	6.7	8.3	10
14%	5.8	7.8	9.7	11.7
16%	6.7	8.9	11.1	13.3
18%	7.5	10	12.5	15
20%	8.3	11	13.9	16.7

☐ Use glucose boluses with caution(risk of rebound and rapid swings in BGL may be harmful)

Investigations of babies with hypoglycaemia (while blood glucose <2.6 mmol/L)

2-4 red top micro tubes

1/2 green top on ice

1-2 spots on screening card (for acyl carnitine)

Urine sample (Metabolic screen)

Total is about 2 mL blood, plus urine sample

Glucose, lactate, ammonia Insulin, growth hormone, cortisol β OH butyrate, free fatty acids Acylcarnitine profile Urine metabolic screen (urine amino & organic acids) Haematocrit or Full blood count if indicated

QH Guidelines update - continued

- ☐ When to perform a "Hypo screen" (severe, symptomatic, persistent/recurrent hypoglycaemia) and how to do it
 - Prioritisation of tests if insufficient sample
- Clearer description of pharmacologic therapy which drugs, how to give them, adverse effects
- □ Clarification of who needs a 6-hour fast before discharge, and how to do it.
- ☐ Improved parent information

Thanks!

...questions?

